摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Galangin O3-glucuronide | 463955-79-5

中文名称
——
中文别名
——
英文名称
Galangin O3-glucuronide
英文别名
(2S,3S,4S,5R,6S)-6-(5,7-dihydroxy-4-oxo-2-phenylchromen-3-yl)oxy-3,4,5-trihydroxyoxane-2-carboxylic acid
Galangin O3-glucuronide化学式
CAS
463955-79-5
化学式
C21H18O11
mdl
——
分子量
446.367
InChiKey
AHSXTKYJDFBHFC-ZUGPOPFOSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.3
  • 重原子数:
    32
  • 可旋转键数:
    4
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.24
  • 拓扑面积:
    183
  • 氢给体数:
    6
  • 氢受体数:
    11

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    高良姜素 在 human UDP-glucuronosyltransferase 1A9, recombinant 作用下, 生成 Galangin O3-glucuronide
    参考文献:
    名称:
    Three-Dimensional Quantitative Structure-Activity Relationship Studies on UGT1A9-Mediated 3-O-Glucuronidation of Natural Flavonols Using a Pharmacophore-Based Comparative Molecular Field Analysis Model
    摘要:
    葡糖醛酸化通常被认为是限制类黄酮醇生物利用度的决定速率的因素之一。因此,利用类黄酮醇的动力学参数(如 Km、Vmax、内在清除率(CLint)= Vmax/ Km)建立葡糖醛酸化的预测模型,将有利于设计合成更多生物可利用的类黄酮醇。本文旨在构建针对3-OH位点的特定比较分子场分析(CoMFA)模型,描述UDP-葡糖醛酸基转移酶(UGT)1A9介导的类黄酮醇葡糖醛酸化过程,该模型可用于设计不佳的UGT1A9底物。我们对重组UGT1A9介导的30种类黄酮醇的3-O-葡糖醛酸化动力学进行了表征,并获得了动力学参数(Km、Vmax、CLint)。观察到的3-O-葡糖醛酸化Km、Vmax和CLint值分别在0.04至0.68 μM、0.04至12.95 nmol/mg/min和0.06至109.60 ml/mg/min之间。为了模拟UGT1A9介导的葡糖醛酸化,我们将30种类黄酮醇分为训练集(23个化合物)和测试集(7个化合物)。然后通过将类黄酮醇映射到特定的共同特征药效团来对齐,从而构建了Vmax和CLint的CoMFA模型。得到的CoMFA模型具有良好的内在和外在一致性,显示出统计学意义和实质性的预测能力(Vmax模型:q2 = 0.738,r2 = 0.976,rpred2 = 0.735;CLint模型:q2 = 0.561,r2 = 0.938,rpred2 = 0.630)。从CoMFA建模得到的轮廓图清晰地表明了与快速或慢速3-O-葡糖醛酸化相关的结构特征。总之,结合CoMFA分析和基于药效团的结构对齐方法是可行的,可以构建用于UGT1A9介导的类黄酮醇区域特异性葡糖醛酸化速率的预测模型。
    DOI:
    10.1124/jpet.110.175356
点击查看最新优质反应信息

文献信息

  • Regioselective Glucuronidation of Flavonols by Six Human UGT1A Isoforms
    作者:Baojian Wu、Beibei Xu、Ming Hu
    DOI:10.1007/s11095-011-0418-5
    日期:2011.8
    Glucuronidation is a major barrier to flavonoid bioavailability; understanding its regiospecificity and reaction kinetics would greatly enhance our ability to model and predict flavonoid disposition. We aimed to determine the regioselective glucuronidation of four model flavonols using six expressed human UGT1A isoforms (UGT1A1, 1A3, 1A7, 1A8, 1A9, 1A10). In vitro reaction kinetic profiles of six UGT1A-mediated metabolism of four flavonols (all with 7-OH group) were characterized; kinetic parameters (Km, Vmax and CLint = Vmax/Km) were determined. UGT1A1 and 1A3 regioselectively metabolized the 7-OH group, whereas UGT1A7, 1A8, 1A9 and 1A10 preferred to glucuronidate the 3-OH group. UGT1A1 and 1A9 were the most efficient conjugating enzymes with Km values of ≤1 μM and relative catalytic efficiency ratios of ≥5.5. Glucuronidation by UGT1As displayed surprisingly strong substrate inhibition. In particular, Ksi values (substrate inhibition constant) were less than 5.4 μM for UGT1A1-mediated metabolism. UGT1A isoforms displayed distinct positional preferences between 3-OH and 7-OH of flavonols. Differentiated kinetic properties between 3-O- and 7-O- glucuronidation suggested that (at least) two distinct binding modes within the catalytic domain were possible. The existence of multiple binding modes should provide better “expert” knowledge to model and predict UGT1A-mediated glucuronidation.
    葡萄糖醛酸化是类黄酮生物利用度的主要障碍;了解其区域选择性和反应动力学会大大增强我们建模和预测类黄酮处置的能力。我们的目标是确定四种模型二苯乙烯酮在六种表达的人类UGT1A同工酶(UGT1A1, 1A3, 1A7, 1A8, 1A9, 1A10)作用下的区域选择性葡萄糖醛酸化。表征了六种UGT1A介导的四种二苯乙烯酮(均含7-OH基团)的体外反应动力学曲线;确定了动力学参数(Km, Vmax和CLint = Vmax/Km)。UGT1A1和1A3区域选择性地代谢7-OH基团,而UGT1A7, 1A8, 1A9和1A10更倾向于对3-OH基团进行葡萄糖醛酸化。UGT1A1和1A9是最有效的结合酶,其Km值≤1 μM,相对催化效率比≥5.5。UGT1A的葡萄糖醛酸化显示出惊人的强底物抑制作用。特别是,UGT1A1介导的代谢的Ksi值(底物抑制常数)小于5.4 μM。UGT1A同工酶显示出对二苯乙烯酮的3-OH和7-OH的不同位置偏好。3-O-和7-O-葡萄糖醛酸化的区分动力学特性表明(至少)催化域内存在两种不同的结合模式。多种结合模式的存在应提供更好的“专家”知识来建模和预测UGT1A介导的葡萄糖醛酸化。
  • Three-Dimensional Quantitative Structure-Activity Relationship Studies on UGT1A9-Mediated 3-O-Glucuronidation of Natural Flavonols Using a Pharmacophore-Based Comparative Molecular Field Analysis Model
    作者:Baojian Wu、John Kenneth Morrow、Rashim Singh、Shuxing Zhang、Ming Hu
    DOI:10.1124/jpet.110.175356
    日期:2011.2
    Glucuronidation is often recognized as one of the rate-determining factors that limit the bioavailability of flavonols. Hence, design and synthesis of more bioavailable flavonols would benefit from the establishment of predictive models of glucuronidation using kinetic parameters [e.g., K m, V max, intrinsic clearance (CLint) = V max/ K m] derived for flavonols. This article aims to construct position (3-OH)-specific comparative molecular field analysis (CoMFA) models to describe UDP-glucuronosyltransferase (UGT) 1A9-mediated glucuronidation of flavonols, which can be used to design poor UGT1A9 substrates. The kinetics of recombinant UGT1A9-mediated 3-O-glucuronidation of 30 flavonols was characterized, and kinetic parameters ( K m, V max, CLint) were obtained. The observed K m, V max, and CLint values of 3-O-glucuronidation ranged from 0.04 to 0.68 μM, 0.04 to 12.95 nmol/mg/min, and 0.06 to 109.60 ml/mg/min, respectively. To model UGT1A9-mediated glucuronidation, 30 flavonols were split into the training (23 compounds) and test (7 compounds) sets. These flavonols were then aligned by mapping the flavonols to specific common feature pharmacophores, which were used to construct CoMFA models of V max and CLint, respectively. The derived CoMFA models possessed good internal and external consistency and showed statistical significance and substantive predictive abilities ( V max model: q 2 = 0.738, r 2 = 0.976, r pred2 = 0.735; CLint model: q 2 = 0.561, r 2 = 0.938, rpred2 = 0.630). The contour maps derived from CoMFA modeling clearly indicate structural characteristics associated with rapid or slow 3-O-glucuronidation. In conclusion, the approach of coupling CoMFA analysis with a pharmacophore-based structural alignment is viable for constructing a predictive model for regiospecific glucuronidation rates of flavonols by UGT1A9.
    葡糖醛酸化通常被认为是限制类黄酮醇生物利用度的决定速率的因素之一。因此,利用类黄酮醇的动力学参数(如 Km、Vmax、内在清除率(CLint)= Vmax/ Km)建立葡糖醛酸化的预测模型,将有利于设计合成更多生物可利用的类黄酮醇。本文旨在构建针对3-OH位点的特定比较分子场分析(CoMFA)模型,描述UDP-葡糖醛酸基转移酶(UGT)1A9介导的类黄酮醇葡糖醛酸化过程,该模型可用于设计不佳的UGT1A9底物。我们对重组UGT1A9介导的30种类黄酮醇的3-O-葡糖醛酸化动力学进行了表征,并获得了动力学参数(Km、Vmax、CLint)。观察到的3-O-葡糖醛酸化Km、Vmax和CLint值分别在0.04至0.68 μM、0.04至12.95 nmol/mg/min和0.06至109.60 ml/mg/min之间。为了模拟UGT1A9介导的葡糖醛酸化,我们将30种类黄酮醇分为训练集(23个化合物)和测试集(7个化合物)。然后通过将类黄酮醇映射到特定的共同特征药效团来对齐,从而构建了Vmax和CLint的CoMFA模型。得到的CoMFA模型具有良好的内在和外在一致性,显示出统计学意义和实质性的预测能力(Vmax模型:q2 = 0.738,r2 = 0.976,rpred2 = 0.735;CLint模型:q2 = 0.561,r2 = 0.938,rpred2 = 0.630)。从CoMFA建模得到的轮廓图清晰地表明了与快速或慢速3-O-葡糖醛酸化相关的结构特征。总之,结合CoMFA分析和基于药效团的结构对齐方法是可行的,可以构建用于UGT1A9介导的类黄酮醇区域特异性葡糖醛酸化速率的预测模型。
查看更多