摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3-bromo-1,6-dibutylpyrene | 1425542-90-0

中文名称
——
中文别名
——
英文名称
3-bromo-1,6-dibutylpyrene
英文别名
3-Bromo-1,6-dibutylpyrene
3-bromo-1,6-dibutylpyrene化学式
CAS
1425542-90-0
化学式
C24H25Br
mdl
——
分子量
393.367
InChiKey
IQQXEUBYEDITRO-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    9.5
  • 重原子数:
    25
  • 可旋转键数:
    6
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.33
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    正溴丁烷3-bromo-1,6-dibutylpyrene正丁基锂 作用下, 以 四氢呋喃正己烷 为溶剂, 反应 0.5h, 以66%的产率得到1,3,6-tributylpyrene
    参考文献:
    名称:
    Fluorescence Enhancement of Pyrene Chromophores Induced by Alkyl Groups through σ–π Conjugation: Systematic Synthesis of Primary, Secondary, and Tertiary Alkylated Pyrenes at the 1, 3, 6, and 8 Positions and Their Photophysical Properties
    摘要:
    We have systematically synthesized 1-, 3-, 6-, and 8-alkyl-substituted pyrene derivatives using the latest synthesis methods and investigated the effects of alkyl substitution on the photophysical properties of the pyrene chromophore. Like the trimethylsilyl group, which is known to enhance the fluorescence properties of some chromophores through sigma*-pi* conjugation, alkyl groups (primary, secondary, and tertiary) enhanced the fluorescence quantum yield of the pyrene chromophore through sigma-pi conjugation in most cases. While these enhancements in the fluorescence quantum yield were beyond expectations, the results were supported by absolute measurements. These results also indicate that ubiquitous alkyl groups can be used to tune the photophysical properties of the pyrene chromophore, as well as to improve the solubility or prevent aggregation. In other words, they can be used to develop new photofunctional materials.
    DOI:
    10.1021/jo400128c
  • 作为产物:
    描述:
    1,6-二溴芘正丁基锂氢溴酸双氧水 作用下, 以 四氢呋喃甲醇乙醚正己烷二氯甲烷 为溶剂, 反应 12.0h, 生成 3-bromo-1,6-dibutylpyrene
    参考文献:
    名称:
    Fluorescence Enhancement of Pyrene Chromophores Induced by Alkyl Groups through σ–π Conjugation: Systematic Synthesis of Primary, Secondary, and Tertiary Alkylated Pyrenes at the 1, 3, 6, and 8 Positions and Their Photophysical Properties
    摘要:
    We have systematically synthesized 1-, 3-, 6-, and 8-alkyl-substituted pyrene derivatives using the latest synthesis methods and investigated the effects of alkyl substitution on the photophysical properties of the pyrene chromophore. Like the trimethylsilyl group, which is known to enhance the fluorescence properties of some chromophores through sigma*-pi* conjugation, alkyl groups (primary, secondary, and tertiary) enhanced the fluorescence quantum yield of the pyrene chromophore through sigma-pi conjugation in most cases. While these enhancements in the fluorescence quantum yield were beyond expectations, the results were supported by absolute measurements. These results also indicate that ubiquitous alkyl groups can be used to tune the photophysical properties of the pyrene chromophore, as well as to improve the solubility or prevent aggregation. In other words, they can be used to develop new photofunctional materials.
    DOI:
    10.1021/jo400128c
点击查看最新优质反应信息

文献信息

  • Fluorescence Enhancement of Pyrene Chromophores Induced by Alkyl Groups through σ–π Conjugation: Systematic Synthesis of Primary, Secondary, and Tertiary Alkylated Pyrenes at the 1, 3, 6, and 8 Positions and Their Photophysical Properties
    作者:Yosuke Niko、Susumu Kawauchi、Shun Otsu、Katsumi Tokumaru、Gen-ichi Konishi
    DOI:10.1021/jo400128c
    日期:2013.4.5
    We have systematically synthesized 1-, 3-, 6-, and 8-alkyl-substituted pyrene derivatives using the latest synthesis methods and investigated the effects of alkyl substitution on the photophysical properties of the pyrene chromophore. Like the trimethylsilyl group, which is known to enhance the fluorescence properties of some chromophores through sigma*-pi* conjugation, alkyl groups (primary, secondary, and tertiary) enhanced the fluorescence quantum yield of the pyrene chromophore through sigma-pi conjugation in most cases. While these enhancements in the fluorescence quantum yield were beyond expectations, the results were supported by absolute measurements. These results also indicate that ubiquitous alkyl groups can be used to tune the photophysical properties of the pyrene chromophore, as well as to improve the solubility or prevent aggregation. In other words, they can be used to develop new photofunctional materials.
查看更多