Rh-Catalyzed Enantioselective Diboration of Simple Alkenes: Reaction Development and Substrate Scope
摘要:
The rhodium-catalyzed reaction between bis(catecholato)diboron and simple alkenes results in the syn addition of the diboron across the alkene. The resulting 1,2-bis(boronate) is subsequently oxidized to provide the 1,2-diol. In the presence of enantiomerically enriched Quinap ligand, high enantioselection in the diboration can be achieved. The reaction is highly selective for trans- and trisubstituted alkenes and can be selective for some monosubstituted alkenes as well. The development of this reaction is described as is the substrate scope and experiments that are informative about the reaction mechanism and competing pathways.
Rh-Catalyzed Enantioselective Diboration of Simple Alkenes: Reaction Development and Substrate Scope
摘要:
The rhodium-catalyzed reaction between bis(catecholato)diboron and simple alkenes results in the syn addition of the diboron across the alkene. The resulting 1,2-bis(boronate) is subsequently oxidized to provide the 1,2-diol. In the presence of enantiomerically enriched Quinap ligand, high enantioselection in the diboration can be achieved. The reaction is highly selective for trans- and trisubstituted alkenes and can be selective for some monosubstituted alkenes as well. The development of this reaction is described as is the substrate scope and experiments that are informative about the reaction mechanism and competing pathways.
Rh-Catalyzed Enantioselective Diboration of Simple Alkenes: Reaction Development and Substrate Scope
作者:Stéphane Trudeau、Jeremy B. Morgan、Mohanish Shrestha、James P. Morken
DOI:10.1021/jo051651m
日期:2005.11.1
The rhodium-catalyzed reaction between bis(catecholato)diboron and simple alkenes results in the syn addition of the diboron across the alkene. The resulting 1,2-bis(boronate) is subsequently oxidized to provide the 1,2-diol. In the presence of enantiomerically enriched Quinap ligand, high enantioselection in the diboration can be achieved. The reaction is highly selective for trans- and trisubstituted alkenes and can be selective for some monosubstituted alkenes as well. The development of this reaction is described as is the substrate scope and experiments that are informative about the reaction mechanism and competing pathways.