Identification of small molecule sphingomyelin synthase inhibitors
摘要:
Sphingomyelin synthase (SMS), which catalyzes ceramide as one of the substrates to produce sphingomyelin, is a critical factor in the sphingolipid biosynthesis pathway. Recent studies indicated that SMS could serve as a novel potential drug target for the treatment of various metabolic diseases such as insulin resistance and atherosclerosis. However, very few small-molecule inhibitors of SMS are known. In this study, we performed structure-based virtual screening in combination with chemical synthesis and bioassay and discovered a class of small-molecule SMS inhibitors. The most potent compound exhibited an IC50 value lower than 20 mu M in an in vitro enzymatic assay. To the best of our knowledge, this is the first time that small-molecule SMS inhibitors with potency close to the micromolar range are publicly revealed. The structure-activity relationship demonstrated by this class of compounds provides insights into the structural features that are essential for effective SMS inhibition. (C) 2013 Elsevier Masson SAS. All rights reserved.
Direct Reductive Amination of Aldehydes and Ketones Using Phenylsilane: Catalysis by Dibutyltin Dichloride
作者:Richard Apodaca、Wei Xiao
DOI:10.1021/ol015948s
日期:2001.5.1
A procedure for direct reductive amination of aldehydes and ketones was developed which uses phenylsilane as a stoichiometric reductant and dibutyltin dichloride as a catalyst. Suitable amines included anilines and dialkylamines but not monoalkylamines.
Sphingomyelin synthase (SMS), which catalyzes ceramide as one of the substrates to produce sphingomyelin, is a critical factor in the sphingolipid biosynthesis pathway. Recent studies indicated that SMS could serve as a novel potential drug target for the treatment of various metabolic diseases such as insulin resistance and atherosclerosis. However, very few small-molecule inhibitors of SMS are known. In this study, we performed structure-based virtual screening in combination with chemical synthesis and bioassay and discovered a class of small-molecule SMS inhibitors. The most potent compound exhibited an IC50 value lower than 20 mu M in an in vitro enzymatic assay. To the best of our knowledge, this is the first time that small-molecule SMS inhibitors with potency close to the micromolar range are publicly revealed. The structure-activity relationship demonstrated by this class of compounds provides insights into the structural features that are essential for effective SMS inhibition. (C) 2013 Elsevier Masson SAS. All rights reserved.
Talukdar, Sanjay; Banerji, Asoke, Journal of the Indian Chemical Society, 1997, vol. 74, # 11-12, p. 842 - 847