摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

threo-9,10-dihydroxyhexadecane-1,16-dioic acid | 3100-38-7

中文名称
——
中文别名
——
英文名称
threo-9,10-dihydroxyhexadecane-1,16-dioic acid
英文别名
threo-7,8-Dihydroxy-hexadecandisaeure-(1,16);threo-7,8-dihydroxy-hexadecanedioic acid;threo-7,8-Dihydroxy-hexadecandisaeure;(+/-)-threo-6.7-Dihydroxy-tetradecan-dicarbonsaeure-(1.14);(7R,8R)-7,8-dihydroxyhexadecanedioic acid
threo-9,10-dihydroxyhexadecane-1,16-dioic acid化学式
CAS
3100-38-7;18287-31-5;18287-32-6;37179-67-2;37179-69-4;124399-58-2
化学式
C16H30O6
mdl
——
分子量
318.411
InChiKey
DVIKJRSTGGXNJP-ZIAGYGMSSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.3
  • 重原子数:
    22
  • 可旋转键数:
    15
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.88
  • 拓扑面积:
    115
  • 氢给体数:
    4
  • 氢受体数:
    6

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

点击查看最新优质反应信息

文献信息

  • The use of thiophen as a chain-extender. Part IV. Synthetic dihydroxyacids
    作者:J. F. McGhie、W. A. Ross、D. H. Laney、J. M. Barker
    DOI:10.1039/j39680000001
    日期:——
    ecanoic, 5,6-dihydroxy-12-methyltetradecanoic, 5,6-dihydroxytetradecanedioic, 7,8-dihydroxyhexadecanedioic, and 9,10-dihydroxyoctadecanedioic acid by the desulphurisation of suitable substituted thiophens is described. The preparation of some derivatives of these acids is also described.
    4,5-二羟基十三烷酸,5,6-二羟基十四烷酸,9,10-二羟基十八烷酸,5,6-二羟基-12-甲基十三烷酸,5,6-二羟基-12-甲基十四烷酸,5,6-二羟基十四烷二酸,7,8的合成描述了通过合适的取代噻吩的脱硫而生成的-二羟基十六烷二酸和9,10-二羟基十八烷二酸。还描述了这些酸的一些衍生物的制备。
  • High-Temperature Tensile Deformation of Glass-Doped 3Y-TZP
    作者:Philip H. Imamura、Neal D. Evans、Taketo Sakuma、Martha L. Mecartney
    DOI:10.1111/j.1151-2916.2000.tb01688.x
    日期:2000.12
    Amorphous grain boundary phases in 3‐mol%‐yttria‐stabilized zirconia ceramics (3Y‐TZP) were studied to determine the influence of intergranular amorphous silicate phases on tensile superplasticity at temperatures of 1300–1500°C. Controlled additions (1 wt%) of compositionally distinct barium silicate and borosilicate phases were used. The initial grain sizes of the pure, barium silicate added, and borosilicate‐added samples were 0.45, 0.55, and 0.55 μm, respectively. Systems with added barium silicate and borosilicate glass both exhibited a 60% reduction in flow stress as compared with pure 3Y‐TZP, with the lower‐viscosity barium silicate system exhibiting a slightly greater reduction in flow stress. The higher‐viscosity borosilicate glass/3Y‐TZP materials exhibited the greatest elongation to failure, while the barium silicate/3Y‐TZP materials had the least elongation. Yttrium was found to segregate to grain boundaries in the pure and borosilicate‐containing samples, and both yttrium and barium were found to segregate to grain boundaries in the barium silicate containing samples. No silicon was observed along two‐grain boundaries in any of the samples, even those containing pockets of glass. The difference in deformation behavior may be due to a combination of viscosity of the glass addition, grain boundary segregation, and grain boundary bond character.
  • SUBMMANNAN, G. B. V.;SHARMA, RAJIN, INDIAN J. CHEM. B , 28,(1989) N, C. 551-555
    作者:SUBMMANNAN, G. B. V.、SHARMA, RAJIN
    DOI:——
    日期:——
  • Nagel; Mertens, Chemische Berichte, 1936, vol. 69, p. 2050
    作者:Nagel、Mertens
    DOI:——
    日期:——
  • Subramanian; Sharma, Indian Journal of Chemistry - Section B Organic and Medicinal Chemistry, 1989, vol. 28, # 7, p. 551 - 555
    作者:Subramanian、Sharma
    DOI:——
    日期:——
查看更多