The Pd-catalyzed etherification of nitroarenes with arenols has been achieved using a new rationally designed ligand. Mechanistic insights were used to design the ligand so that both the oxidative addition and reductive elimination steps of a plausible catalytic cycle were facilitated. The catalytic system established here provides direct access to a range of unsymmetrical diaryl ethers from nitroarenes
One aspect of the invention relates to a metal-catalyzed conversion of aryl halides and sulfonates to the corresponding aryl fluorides. Another aspect of the invention relates to a metal-catalyzed conversion of heteroaryl halides and sulfonates to the corresponding heteroaryl fluorides. Another aspect of the invention relates to a metal-catalyzed conversion of vinyl halides and sulfonates to the corresponding vinyl fluorides. In certain embodiments, simple fluoride sources, such as AgF and CsF, are used. In certain embodiments, the transformations tolerate a wide range of functional groups, allowing for introduction of fluorine atoms into highly functionalized organic molecules.