摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1-(4-methoxyphenyl)-3-phenyl-1H-indazole | 1428979-29-6

中文名称
——
中文别名
——
英文名称
1-(4-methoxyphenyl)-3-phenyl-1H-indazole
英文别名
1-(4-Methoxyphenyl)-3-phenylindazole;1-(4-methoxyphenyl)-3-phenylindazole
1-(4-methoxyphenyl)-3-phenyl-1H-indazole化学式
CAS
1428979-29-6
化学式
C20H16N2O
mdl
——
分子量
300.36
InChiKey
GKTATZBHYMMQRV-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.9
  • 重原子数:
    23
  • 可旋转键数:
    3
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.05
  • 拓扑面积:
    27
  • 氢给体数:
    0
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    参考文献:
    名称:
    芳基腙电化学自由基 Csp2-H/N-H 环化合成 1H-吲唑
    摘要:
    对 N-杂环骨架进行高效且可持续的 C-N 键形成反应一直是有机合成领域的长期兴趣。在这项工作中,我们开发了芳基腙到 1 H-吲唑的电化学自由基 C sp 2 -H/N-H 环化。采用电化学阳极氧化方法合成了多种1 H-吲唑衍生物,产率中等至较好。HFIP不仅用作溶剂或质子供体,而且可以促进N自由基的形成。这种合成方法操作简单,较便宜的电极适用于这种化学。
    DOI:
    10.1039/d1cc04656j
点击查看最新优质反应信息

文献信息

  • Divergent Synthesis of 1<i>H</i>-Indazoles and 1<i>H</i>-Pyrazoles from Hydrazones<i>via</i>Iodine-Mediated Intramolecular Aryl and<i>sp</i><sup>3</sup>C-H Amination
    作者:Wei Wei、Zhen Wang、Xikang Yang、Wenquan Yu、Junbiao Chang
    DOI:10.1002/adsc.201700824
    日期:2017.10.4
    by condensation of hydrazines with the corresponding ketones. In the presence of potassium iodide, I2-mediated oxidative cyclization of diaryl and tert-butyl aryl ketone hydrazones produced 1H-indazoles via direct aryl C–H amination. Under similar reaction conditions, primary and secondary alkyl ketone hydrazones were transformed into 1H-pyrazole products in a reaction involving sp3 C–H amination. This
    molecular原子的分子内CH胺的发散已被开发出来,采用分子(I 2)作为唯一氧化剂。通过与相应的酮的缩合可以容易地获得所需的底物。在碘化钾存在下,二芳基和叔丁基芳基酮aryl的I 2介导的氧化环化反应通过直接芳基CH胺化反应生成1 H-吲唑。在相似的反应条件下,伯和仲烷基酮在涉及sp 3的反应中转化为1 H-吡唑产物。C–H胺化。这种合成方法不涉及过渡属,并且操作简单,可以高效,可扩展地轻松获得吲唑吡唑生物
  • Copper-Catalyzed Aerobic C(sp<sup>2</sup>)–H Functionalization for C–N Bond Formation: Synthesis of Pyrazoles and Indazoles
    作者:Xianwei Li、Li He、Huoji Chen、Wanqing Wu、Huanfeng Jiang
    DOI:10.1021/jo400162d
    日期:2013.4.19
    A simple, practical, and highly efficient synthesis of pyrazoles and indazoles via copper-catalyzed direct aerobic oxidative C(sp2)–H amination has been reported herein. This process tolerated a variety of functional groups under mild conditions. Further diversification of pyrazoles was also investigated, which provided its potential for drug discovery.
    本文报道了通过催化的直接好氧氧化C(sp 2)-H胺的合成简单,实用,高效的吡唑吲唑合成方法。在温和条件下,该过程可耐受各种官能团。还研究了吡唑的进一步多样化,这为其药物发现提供了潜力。
  • Ni and Cu-catalyzed one pot synthesis of unsymmetrical 1,3-di(hetero)aryl-1H-indazoles from hydrazine, o-chloro (hetero)benzophenones, and (hetero)aryl bromides
    作者:Carson Wiethan、Christopher M. Lavoie、Andrey Borzenko、Jillian S. K. Clark、Helio G. Bonacorso、Mark Stradiotto
    DOI:10.1039/c7ob00841d
    日期:——
    cyclization of in situ generated ortho-chlorobenzophenone hydrazone derivatives, to afford 3-(hetero)aryl-1H-indazoles, is documented for the first time. The product 1H-indazoles can be transformed subsequently in a one-pot procedure into 1,3-di(hetero)aryl-1H-indazoles via copper-catalyzed N-arylation with (hetero)aryl bromides.
    首次记载了催化的原位生成的邻二苯甲酮derivatives衍生物的环化反应,得到3-(杂)芳基-1 H-吲唑。产物1 H-吲唑可随后通过一锅法经与(杂)芳基的N-芳基化反应转变为1,3-二(杂)芳基-1 H-吲唑
  • Electrochemical dehydrogenative C–N coupling of hydrazones for the synthesis of 1<i>H</i>-indazoles
    作者:Hong Zhang、Zenghui Ye、Na Chen、Zhenkun Chen、Fengzhi Zhang
    DOI:10.1039/d1gc04534b
    日期:——
    An electrochemical dehydrogenative C–N coupling method has been developed for the synthesis of 1H-indazoles from easily available hydrazones. Various functional groups are compatible with this metal- and oxidant-free protocol which can be carried out on a gram-scale under neutral and mild conditions. This method was applied for the efficient synthesis of anti-tumor compounds. Mechanism studies show
    已经开发了一种电化学脱氢 C-N 偶联方法,用于从容易获得的腙合成 1 H-吲唑。各种官能团与这种不含属和氧化剂的协议兼容,可以在中性和温和条件下以克级进行。该方法可用于高效合成抗肿瘤化合物。机制研究表明,HFIP 在这一转变中发挥着重要作用,可能涉及一种激进的途径。
查看更多