▪ Abstract The synthesis and excretion of bile acids comprise the major pathway of cholesterol catabolism in mammals. Synthesis provides a direct means of converting cholesterol, which is both hydrophobic and insoluble, into a water-soluble and readily excreted molecule, the bile acid. The biosynthetic steps that accomplish this transformation also confer detergent properties to the bile acid, which are exploited by the body to facilitate the secretion of cholesterol from the liver. This role in the elimination of cholesterol is counterbalanced by the ability of bile acids to solubilize dietary cholesterol and essential nutrients and to promote their delivery to the liver. The synthesis of a full complement of bile acids requires 17 enzymes. The expression of selected enzymes in the pathway is tightly regulated by nuclear hormone receptors and other transcription factors, which ensure a constant supply of bile acids in an ever changing metabolic environment. Inherited mutations that impair bile acid synthesis cause a spectrum of human disease; this ranges from liver failure in early childhood to progressive neuropathy in adults.
A cytochrome P-450 which catalyses 25-hydroxylation of vitamin D3 has been purified to apparent homogeneity from pig liver microsomes. The specific content of cytochrome P-450 was 12 nmol.mg of protein-1, and the preparation showed a single band with an apparent M(r) of 50,500 upon SDS/PAGE. A monoclonal antibody raised against the vitamin D3 25-hydroxylase reacted strongly with the purified 25-hydroxylating cytochrome P-450 from pig kidney microsomes [Bergman & Postlind (1990) Biochem. J. 270, 345-350]. The liver enzyme showed structural and functional properties very similar to those of the kidney enzyme. The two enzymes differed with respect to only one of the first 16 N-terminal amino acids. The vitamin D3 25-hydroxylase in pig liver microsomes exhibited a turnover and an apparent Km for 25-hydroxylation of vitamin D3 which were of the same order of magnitude as those of a well-characterized male-specific 25-hydroxylating cytochrome P-450 in rat liver microsomes. The two enzymes differed structurally. The pig liver enzyme was, in contrast to the rat liver enzyme, not sex-specific, and did not catalyse 16 alpha-hydroxylation of testosterone. These properties of the 25-hydroxylase in rat liver microsomes have led to questions on the role of microsomal 25-hydroxylation of vitamin D3. It is concluded that studies on microsomal 25-hydroxylation with the rat may be misleading. The results of the present study show that the pig appears to be a representative species for evaluation of vitamin D3 hydroxylases in other mammals, including man.
The cytochrome P-450 enzyme which catalyses 25-hydroxylation of vitamin D3 (cytochrome P-450(25] from pig kidney microsomes [Postlind & Wikvall (1988) Biochem. J. 253, 549-552] has been further purified. The specific content of cytochrome P-450 was 15.0 nmol.mg of protein-1, and the protein showed a single spot with an apparent isoelectric point of 7.4 and an Mr of 50,500 upon two-dimensional isoelectric-focusing/SDS/PAGE. The 25-hydroxylase activity towards vitamin D3 was 124 pmol.min-1.nmol of cytochrome P-450-1 and towards 1 alpha-hydroxyvitamin D3 it was 1375 pmol.min-1.nmol-1. The preparation also catalysed the 25-hydroxylation of 5 beta-cholestane-3 alpha,7 alpha-diol at a rate of 1000 pmol.min-1.nmol of cytochrome P-450-1 and omega-1 hydroxylation of lauric acid at a rate of 200 pmol.min-1.nmol of cytochrome P-450-1. A monoclonal antibody raised against the 25-hydroxylating cytochrome P-450, designated mAb 25E5, was prepared. After coupling to Sepharose, the antibody was able to bind to cytochrome P-450(25) from kidney as well as from pig liver microsomes, and to immunoprecipitate the activity for 25-hydroxylation of vitamin D3 and 5 beta-cholestane-3 alpha,7 alpha-diol when assayed in a reconstituted system. The hydroxylase activity towards lauric acid was not inhibited by the antibody. By SDS/PAGE and immunoblotting with mAb 25E5, cytochrome P-450(25) was detected in both pig kidney and pig liver microsomes. These results indicate a similar or the same species of cytochrome P-450 in pig kidney and liver microsomes catalysing 25-hydroxylation of vitamin D3 and C27 steroids. The N-terminal amino acid sequence of the purified cytochrome P-450(25) from pig kidney microsomes differed from those of hitherto isolated mammalian cytochromes P-450.