Substrate-Directed Diastereoselective Hydroformylation: Key Step for the Assembly of Polypropionate Subunits
摘要:
Stereoselective hydroformylation of methallylic alcohols of types 3 and 4, that employed the substrate-bound catalyst-directing ortho-diphenyl-phosphanylbenzoyl (o-DPPB) group, was used as a key step for the construction of bifunctionalized stereotriads, which ale central building blocks of polyketide natural products. The required diastereomerically pure syn- and anti- starting methallylic alcohol systems 3 and 4 were obtained either by Cram-selective carbonyl reduction, Frater alkylation, or by chelation-controlled carbonyl reduction. Enantiomerically pure stereotriad building blocks were derived from a combination of an Evans aldol addition and subsequent o-DPPB-directed stereoselective hydroformylation (-->24). A crystal structure analysis for steretriad building block 24 confirmed the relative and absolute configuration of the stereogenic centers. Additionally, it provided evidence for a previously postulated preferred conformation of the catalyst-directing o-DPPB group as well as of the polyketide main chain.
The stereoselective α-alkylation of chiral β-hydroxy esters and some applications thereof
作者:G. Fráter、U. Müller、W. Günther
DOI:10.1016/s0040-4020(01)82413-3
日期:1984.1
The stereoselectivity of the α-alkylation of chiral β-hydroxyester is discussed. The configuration of the alkylated product was proved chemically (Scheme 2). A one pot aldol-alkylation reaction was developed leading stereoselectively to racemic (s*,s*)-α-alkyl-β-hydroxy ester (Scheme 3,4). Baker's yeast reduction of 2-alkyl-3-keto ester led to valuable chiral (2RS,3S)-intermediates, which were converted
Stereoselective hydroformylation of methallylic alcohols of types 3 and 4, that employed the substrate-bound catalyst-directing ortho-diphenyl-phosphanylbenzoyl (o-DPPB) group, was used as a key step for the construction of bifunctionalized stereotriads, which ale central building blocks of polyketide natural products. The required diastereomerically pure syn- and anti- starting methallylic alcohol systems 3 and 4 were obtained either by Cram-selective carbonyl reduction, Frater alkylation, or by chelation-controlled carbonyl reduction. Enantiomerically pure stereotriad building blocks were derived from a combination of an Evans aldol addition and subsequent o-DPPB-directed stereoselective hydroformylation (-->24). A crystal structure analysis for steretriad building block 24 confirmed the relative and absolute configuration of the stereogenic centers. Additionally, it provided evidence for a previously postulated preferred conformation of the catalyst-directing o-DPPB group as well as of the polyketide main chain.