摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

p-nitrophenyl 6-O-β-D-glucopyranosyl-β-D-glucopyranoside | 144939-65-1

中文名称
——
中文别名
——
英文名称
p-nitrophenyl 6-O-β-D-glucopyranosyl-β-D-glucopyranoside
英文别名
6-O-(β-D-glucopyranosyl)-β-D-glucopyranoside;para-nitrophenyl-β-D-gentiobioside;p-nitrophenyl β-gentiobioside;(4-nitro-phenyl)-(O6-β-D-glucopyranosyl-β-D-glucopyranoside);(4-Nitro-phenyl)-(O6-β-D-glucopyranosyl-β-D-glucopyranosid);4-Nitrophenyl 6-O-Beta-D-Glucopyranosyl-Beta-D-Glucopyranoside;(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[[(2R,3S,4S,5R,6S)-3,4,5-trihydroxy-6-(4-nitrophenoxy)oxan-2-yl]methoxy]oxane-3,4,5-triol
p-nitrophenyl 6-O-β-D-glucopyranosyl-β-D-glucopyranoside化学式
CAS
144939-65-1
化学式
C18H25NO13
mdl
——
分子量
463.395
InChiKey
ISCYUJSLZREARS-NNUBVHJDSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    791.3±60.0 °C(Predicted)
  • 密度:
    1.70±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    -2.6
  • 重原子数:
    32
  • 可旋转键数:
    6
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.67
  • 拓扑面积:
    224
  • 氢给体数:
    7
  • 氢受体数:
    13

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    p-nitrophenyl 6-O-β-D-glucopyranosyl-β-D-glucopyranoside 在 β-primeverosidase 作用下, 以 various solvent(s) 为溶剂, 生成 gentibiose
    参考文献:
    名称:
    Expression and Biochemical Characterization of β-Primeverosidase and Application of β-Primeverosylamidine to Affinity Purification
    摘要:
    β-Primeverosidase(PD)是一种家族1糖苷酶,催化β-早春花苷(6-O-β-d-木糖吡喃糖基-β-d-葡萄吡喃糖苷)水解,释放出早春花二糖。为了研究PD如何识别β-早春花苷的二糖部分,我们通过杆状病毒-昆虫细胞系统表达了重组PD。重组PD从High Five细胞中分泌出来,并进行了N-糖基化修饰和N端信号肽的正确切割。重组PD对β-早春花苷的糖苷部分表现出高度的底物特异性,与茶树中天然PD的底物特异性一致。接下来,合成了β-糖苷酰胺作为底物类似物抑制剂。β-早春花苷酰胺强烈抑制PD活性,而β-葡萄糖苷酰胺没有抑制作用。因此,β-早春花苷酰胺是一个理想的化学工具,用于探测PD活性位点中二糖的识别。使用β-早春花苷酰胺作为配体制备了PD的亲和吸附剂。亲和层析获得了高纯度的大量PD,允许进行晶体学研究。
    DOI:
    10.1271/bbb.70447
  • 作为产物:
    描述:
    alkaline earth salt of/the/ methylsulfuric acid 在 甲醇barium methoxide 作用下, 生成 p-nitrophenyl 6-O-β-D-glucopyranosyl-β-D-glucopyranoside
    参考文献:
    名称:
    Babers; Goebel, Journal of Biological Chemistry, 1934, vol. 105, p. 473,476
    摘要:
    DOI:
点击查看最新优质反应信息

文献信息

  • Synthesis of Complex Oligosaccharides by Using a Mutated (1,3)--D-Glucan Endohydrolase from Barley
    作者:Jon K. Fairweather、Maria Hrmova、Simon J. Rutten、Geoffrey B. Fincher、Hugues Driguez
    DOI:10.1002/chem.200304733
    日期:2003.6.6
    Complex oligosaccharides with newly formed (1,3)-beta-glycosidic linkages were obtained in good to excellent yields when substituted or unsubstituted alpha-laminaribiosyl fluorides, acting as donors, were condensed onto mono- and disaccharide beta-D-hexopyranoside acceptors by using a (1,3)-beta-D-glycosynthase. These linear and branched (1,3)-beta-linked oligosaccharides could prove to be important
    当取代或未取代的α-laminaribiosyl氟化物,作为供体,通过缩合生成单糖和二糖β-D-己基吡喃糖苷受体时,可以良好的产率获得具有新形成的(1,3)-β-糖苷键的复杂寡糖。 (1,3)-β-D-糖基合成酶。这些线性和分支的(1,3)-β-连接的寡糖在医疗,制药和农业应用领域中可能被证明是重要的。此外,观察到(1,3)-β-D-葡聚糖葡糖合酶在其受体亚位点中容纳了(1,3)-,(1,4),-和(1,6)-β-寡糖,但来自高等植物的野生型(1,3)-β-D-葡聚糖内切酶的生理作用却出乎意料。
  • Isolation and Characterization of a β-Primeverosidase-Like Enzyme from<i>Penicillium multicolor</i>
    作者:Kazutaka TSURUHAMI、Shigeharu MORI、Satoshi AMARUME、Shigetaka SARUWATARI、Takeomi MURATA、Jun HIRAKAKE、Kanzo SAKATA、Taichi USUI
    DOI:10.1271/bbb.70.691
    日期:2006.1
    p-Nitrophenyl and eugenyl β-primeveroside (6-O-β-D-xylopyranosyl-β-D-glucopyranoside) hydrolytic activity was found in culture filtrate from Penicillium multicolor IAM7153, and the enzyme was isolated. The enzyme was purified as a β-primeverosidase-like enzyme by precipitation with ammonium sulfate followed by successive chromatographies on Phenyl Sepharose, Mono Q, and β-galactosylamidine affinity columns. The molecular mass was estimated to be 50 kDa by SDS–PAGE and gel filtration. The purified enzyme was highly specific toward the substrate p-nitrophenyl β-primeveroside, which was cleaved in an endo-manner into primeverose and p-nitrophenol, but a series of β-primeveroside as aroma precursors were hydrolyzed only slightly as substrates for the enzyme. In analyses of its hydrolytic action and kinetics, the enzyme showed narrow substrate specificity with respect to the aglycon and glycon moieties of the diglycoside. We conclude that the present enzyme is a kind of β-diglycosidase rather than β-primeverosidase.
    从多彩青霉IAM7153的培养滤液中发现了对p-硝基苯基和丁香酚β-樱草糖苷(6-O-β-D-木糖吡喃糖基-β-D-葡萄吡喃糖苷)的水解活性,并分离出了该酶。该酶通过硫酸铵沉淀,然后依次通过苯基琼脂糖、Mono Q和β-半乳糖苷酰胺亲和柱层析纯化,类似于一种β-樱草糖苷酶。通过SDS-PAGE和凝胶过滤法估算其分子质量为50 kDa。纯化的酶对底物p-硝基苯基β-樱草糖苷具有高度特异性,以内切方式裂解为樱草糖和p-硝基苯酚,但对一系列作为香气前体的β-樱草糖苷底物的水解作用轻微。在其水解作用和动力学分析中,该酶对二糖苷的糖苷配基和糖基部分表现出较窄的底物特异性。我们得出结论,目前的酶是一种β-二糖苷酶,而不是β-樱草糖苷酶。
  • Conversion of β‐1,6‐Glucans to Gentiobiose using an endo‐β‐1,6‐Glucanase PsGly30A from <i>Paenibacillus</i> sp. GKG
    作者:Gediminas Plakys、Nina Urbelienė、Gintaras Urbelis、Justas Vaitekūnas、Linas Labanauskas、Edita Mažonienė、Rolandas Meškys
    DOI:10.1002/cbic.202400010
    日期:2024.4.16
    6-glucanase capable of hydrolysing β-1,6-glucans: yeast β-glucan from Saccharomyces cerevisiae and pustulan from Lasallia pustulata. The main hydrolysis product is the valuable disaccharide gentiobiose. Gentiobiose is used as a flavour enhancer due to its refreshing bitter taste, similar to chocolate and coffee.
    美味转化:PsGly30A 是一种内切 β-1,6-葡聚糖酶,能够水解 β-1,6-葡聚糖:来自酿酒酵母的酵母 β-葡聚糖和来自Lasallia pustulata的 pustulan。主要水解产物是有价值的二糖龙胆二糖。龙胆二糖因其清爽的苦味而被用作增味剂,类似于巧克力和咖啡。
  • Major Change in Regiospecificity for the Exo-1,3-β-glucanase from <i>Candida albicans</i> following Its Conversion to a Glycosynthase
    作者:Y. Nakatani、D. S. Larsen、S. M. Cutfield、J. F. Cutfield
    DOI:10.1021/bi500239m
    日期:2014.5.27
    The exo-1,3-beta-glucanase (Exg) from Candida albicans is involved in cell wall beta-D-glucan metabolism and morphogenesis through its hydrolase and transglycosidase activities. Previous work has shown that both these activities strongly favor beta-1,3-linkages. The E292S Exg variant displayed modest glycosynthase activity using alpha-D-glucopyranosyl fluoride (alpha-GlcF) as the donor and pNP-beta-D-glucopyranoside (pNPGlc) as the acceptor but surprisingly showed a marked preference for synthesizing beta-1,6-linked over beta-1,3- and beta-1,4-linked disaccharide products. With pNPXyl as the acceptor, the preference became beta-1,4 over beta-1,3. The crystal structure of the glycosynthase bound to both of its substrates, alpha-GlcF and pNPGlc, is the first such ternary complex structure to be determined. The results revealed that the donor bound in the -1 subsite, as expected, while the acceptor was oriented in the +1 subsite to facilitate beta-1,6-linkage, thereby supporting the results from solution studies. A second crystal structure containing the major product of glycosynthesis, pNP-gentiobiose, showed that the -1 subsite allows another docking position for the terminal sugar; i.e., one position is set up for catalysis, whereas the other is an intermediate stage prior to the displacement of water from the active site by the incoming sugar hydroxyls. The +1 subsite, an aromatic "clamp", permits several different sugar positions and orientations, including a 180 degrees flip that explains the observed variable regiospecificity. The p-nitrophenyl group on the acceptor most likely influences the unexpectedly observed beta-1,6-specificity through its interaction with F229. These results demonstrate that tailoring the specificity of a particular glycosynthase depends not only on the chemical structure of the acceptor but also on understanding the structural basis of the promiscuity of the native enzyme.
  • β-Mannosynthase: Synthesis ofβ-Mannosides with a Mutantβ-Mannosidase
    作者:Oyekanmi Nashiru、David L. Zechel、Dominik Stoll、Taraneh Mohammadzadeh、R. Antony J. Warren、Stephen G. Withers
    DOI:10.1002/1521-3773(20010119)40:2<417::aid-anie417>3.0.co;2-v
    日期:2001.1.19
    Engineering enzymes: The glutamic acid nucleophile of a retaining β-mannosidase has been replaced with a serine residue to form a β-mannosynthase. When the new enzyme is provided with an α-mannosyl fluoride donor and an appropriate acceptor, β-mannoside linkages are synthesized. Remarkably, α-mannosyl fluoride can be generated in situ by providing the mannosynthase with excess fluoride ion.
查看更多