摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5-([N-(2,6-diisopropylphenyl)]-9-perylenyl-3,4-dicarboximide)-3,4'-dihexyl-5'-iodo-2,2'-bithiophene | 1372812-56-0

中文名称
——
中文别名
——
英文名称
5-([N-(2,6-diisopropylphenyl)]-9-perylenyl-3,4-dicarboximide)-3,4'-dihexyl-5'-iodo-2,2'-bithiophene
英文别名
——
5-([N-(2,6-diisopropylphenyl)]-9-perylenyl-3,4-dicarboximide)-3,4'-dihexyl-5'-iodo-2,2'-bithiophene化学式
CAS
1372812-56-0
化学式
C54H54INO2S2
mdl
——
分子量
940.065
InChiKey
XRMXWBCQZDBLJJ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    17.09
  • 重原子数:
    60.0
  • 可旋转键数:
    15.0
  • 环数:
    9.0
  • sp3杂化的碳原子比例:
    0.33
  • 拓扑面积:
    37.38
  • 氢给体数:
    0.0
  • 氢受体数:
    4.0

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    Synthesis and characterization of perylene–bithiophene–triphenylamine triads: studies on the effect of alkyl-substitution in p-type NiO based photocathodes
    摘要:
    我们报道了新型供体-π-受体(D-π-A)染料的合成及其在基于氧化镍(NiO)光阴极的染料敏化太阳能电池(DSC)中的应用。这些D-π-A敏化剂包含三苯胺供体、联噻吩π桥和苝酰亚胺(PMI)受体基团。两个连在三苯胺上的羧酸基团使染料与NiO表面牢固锚定。该系列染料首先通过在联噻吩和三苯胺单元之间引入乙炔连接基团(1 vs. 2)来变化,从而增加了共轭桥的长度。尽管光电性质非常相似,但含乙炔的染料2在p-DSC中与1相比显示了约25%的功率转换效率提升,这主要归因于电流密度的增加。与最初的预期相反,纳米秒瞬态吸收光谱(TAS)测量的结果显示,染料的PMI单元与NiO表面之间的距离对光诱导的染料阴离子寿命没有主要影响。此外,改变连接桥上的联噻吩上的烷基链的位置(3和4)导致染料吸收光谱的轻微红移,这是由于PMI和π桥之间的电荷离域增加,这是由于PMI和相邻噻吩单元之间的扭转角减小。进行了量子化学DFT计算,以评估这些扭转角并研究它们对相关分子轨道中电子密度分布的影响。异构体染料3和4的分子结构的这些变化并没有转化为光伏性能的改善,这主要是由于瞬态吸收光谱探测到的较低的电荷光生率。尽管对于p型DSC,在全太阳光照下(模拟AM1.5G阳光,100 mW cm⁻²)展示了令人印象深刻的总体光-电转换效率(0.04-0.10%)和广泛的入射光子-电流效率(IPCE)响应(350-700 nm),但对于这些新型染料的研究清楚地表明,在用于光阴极DSC的p型敏化剂的设计中,需要谨慎的设计规则。
    DOI:
    10.1039/c2jm16847b
  • 作为产物:
    参考文献:
    名称:
    Synthesis and characterization of perylene–bithiophene–triphenylamine triads: studies on the effect of alkyl-substitution in p-type NiO based photocathodes
    摘要:
    我们报道了新型供体-π-受体(D-π-A)染料的合成及其在基于氧化镍(NiO)光阴极的染料敏化太阳能电池(DSC)中的应用。这些D-π-A敏化剂包含三苯胺供体、联噻吩π桥和苝酰亚胺(PMI)受体基团。两个连在三苯胺上的羧酸基团使染料与NiO表面牢固锚定。该系列染料首先通过在联噻吩和三苯胺单元之间引入乙炔连接基团(1 vs. 2)来变化,从而增加了共轭桥的长度。尽管光电性质非常相似,但含乙炔的染料2在p-DSC中与1相比显示了约25%的功率转换效率提升,这主要归因于电流密度的增加。与最初的预期相反,纳米秒瞬态吸收光谱(TAS)测量的结果显示,染料的PMI单元与NiO表面之间的距离对光诱导的染料阴离子寿命没有主要影响。此外,改变连接桥上的联噻吩上的烷基链的位置(3和4)导致染料吸收光谱的轻微红移,这是由于PMI和π桥之间的电荷离域增加,这是由于PMI和相邻噻吩单元之间的扭转角减小。进行了量子化学DFT计算,以评估这些扭转角并研究它们对相关分子轨道中电子密度分布的影响。异构体染料3和4的分子结构的这些变化并没有转化为光伏性能的改善,这主要是由于瞬态吸收光谱探测到的较低的电荷光生率。尽管对于p型DSC,在全太阳光照下(模拟AM1.5G阳光,100 mW cm⁻²)展示了令人印象深刻的总体光-电转换效率(0.04-0.10%)和广泛的入射光子-电流效率(IPCE)响应(350-700 nm),但对于这些新型染料的研究清楚地表明,在用于光阴极DSC的p型敏化剂的设计中,需要谨慎的设计规则。
    DOI:
    10.1039/c2jm16847b
点击查看最新优质反应信息