1-Hydroxypyrene (1) shows unusual acid–base chemistry in its singlet excited state. Whereas most hydroxyarenes experience a marked enhancement in their acidity when excited, and rapidly deprotonate to give the corresponding phenolate anion, this is not an important pathway for 1, despite theoretical predictions that 1 should experience enhanced acidity as well. In this work, we demonstrate that 1 undergoes a competing excited state intramolecular proton transfer from the OH to carbon atoms at the 3, 6, and 8 positions of the pyrene ring to give quinone methide intermediates. When the reaction is carried out in D2O, reversion of these quinone methides to starting material results in replacement of the ring hydrogens with deuterium, providing a convenient handle to follow the reaction with NMR spectroscopy and mass spectrometry. The quantum yield for the reaction is 0.025 and appears to not be strongly dependent on the water content when aqueous acetonitrile solutions are used. 1-(2-Hydroxyphenyl)pyrene (19) was prepared and studied and shows similar reactivity to 1.