A new GLP-1 analogue with prolonged glucose-lowering activity in vivo via backbone-based modification at the N-terminus
摘要:
Glucagon-like peptide-1 (GLP-1) is an endogenous insulinotropic hormone with wonderful glucose-lowering activity. However, its clinical use in type II diabetes is limited due to its rapid degradation at the N-terminus by dipeptidyl peptidase IV (DPP-IV). Among the N-terminal modifications of GLP-1, backbone-based modification was rarely reported. Herein, we employed two backbone-based strategies to modify the N-terminus of tGLP-1. Firstly, the amide N-methylated analogues 2-6 were designed and synthesized to make a full screening of the N-terminal amide bonds, and the loss of GLP-1 receptor (GLP-1R) activation indicated the importance of amide H-bonds. Secondly, with retaining the N-terminal amide H-bonds, the beta-peptide replacement strategy was used and analogues 7-13 were synthesized. By two rounds of screening, analogue 10 was identified. Analogue 10 greatly improved the DPP-IV resistance with maintaining good GLP-1R activation in vitro, and showed approximately a 4-fold prolonged blood glucose-lowering activity in vivo in comparison with tGLP-1. This modification strategy will benefit the development of GLP-1-based anti-diabetic drugs. (C) 2016 Elsevier Ltd. All rights reserved.
The present invention relates to protein-lysine N-methyltransferase SMYD2 (SET and MYND domain-containing protein 2) inhibitors, in particular SMYD2-inhibitory substituted cyanoguanidine- pyrazolines of general formula (I), wherein R
1
, R
2
, R
3
, R
4
and R
5
have the meaning as described and defined herein, as well as to pharmaceutical compositions comprising compounds according to the invention and to their prophylactic and therapeutic use for hyperproliferative disorders, in particular for cancer, respectively tumour disorders. The present invention furthermore relates to the use of SMYD2 inhibitors for benign hyperplasias, atherosclerotic disorders, sepsis, autoimmune disorders, vascular disorders, viral infections, neurodegenerative disorders, inflammatory disorders, atherosclerotic disorders and the control of male fertility.