摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

甲基谷胱甘肽 | 34286-34-5

中文名称
甲基谷胱甘肽
中文别名
——
英文名称
γ-L-glutamyl-L-cysteinyl-L-alanine
英文别名
γGlu-Cys-Ala;homoglutathione;methylglutathione;gamma-Glutamylcysteinylalanine;(2S)-2-amino-5-[[(2R)-1-[[(1S)-1-carboxyethyl]amino]-1-oxo-3-sulfanylpropan-2-yl]amino]-5-oxopentanoic acid
甲基谷胱甘肽化学式
CAS
34286-34-5
化学式
C11H19N3O6S
mdl
——
分子量
321.354
InChiKey
UTYLFDUOWWLTBM-ACZMJKKPSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    736.1±60.0 °C(Predicted)
  • 密度:
    1.396±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    -4.1
  • 重原子数:
    21
  • 可旋转键数:
    9
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.64
  • 拓扑面积:
    160
  • 氢给体数:
    6
  • 氢受体数:
    8

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    甲基谷胱甘肽盐酸 作用下, 反应 10.17h, 生成
    参考文献:
    名称:
    Use of L ‐[ 15 N] glutamic acid and homoglutathione to determine both glutathione synthesis and concentration by gas chromatography‐mass spectrometry (GCMS)
    摘要:
    描述了一种使用气相色谱质谱法同时测量生物样品中谷胱甘肽富集和浓度的方法。该方法基于谷胱甘肽 N,S-乙氧基羰基甲酯衍生物的制备,并使用高谷胱甘肽(谷氨酰-半胱氨酰-丙氨酸)作为内标。还报道了测定谷氨酸浓度和富集的程序。两种方法的日内和日间分析间变异系数均小于 5%,已知添加量的谷胱甘肽和谷氨酸的回收率接近 100%。总而言之,这些方法允许使用 L-[15N] 谷氨酸输注测定红细胞中的谷胱甘肽浓度和分数合成率。该方法应用于体内,以研究与对照过夜禁食相比,72 小时禁食对单只狗红细胞谷胱甘肽的影响。 72 小时禁食与红细胞谷胱甘肽水平下降 39% 相关(2.9 ± 0.4 与 4.7 ± 0.5 mmol l−1,禁食与对照),而谷胱甘肽合成分数没有变化(67.4% 与 71.3% d−1,禁食)与对照)。版权所有 © 2001 约翰威利父子有限公司
    DOI:
    10.1002/jms.185
  • 作为产物:
    描述:
    L-丙氨酸5-L-谷氨酰-L-半胱氨酸磷烯醇丙酮酸 、 adenosine 5'-triphosphate disodium salt hydrate 、 β-nicotinamideadenine dinucleotide, reduced disodium salt hydrate 、 glutathione synthetase mutant F152G 、 type II rabbit muscle lactate dehydrogenase 、 type II rabbit muscle pyruvate kinase 作用下, 以 aq. buffer 为溶剂, 反应 2.0h, 生成 甲基谷胱甘肽
    参考文献:
    名称:
    Metabolic Synthesis of Clickable Glutathione for Chemoselective Detection of Glutathionylation
    摘要:
    Glutathionylation involves reversible protein cysteine modification that regulates the function of numerous proteins in response to redox stimuli, thereby altering cellular processes. Herein we developed a selective and versatile approach to identifying glutathionylation by using a mutant of glutathione synthetase (GS). GS wild-type catalyzes coupling of γGlu-Cys to Gly to form glutathione. We generated a GS mutant that catalyzes azido-Ala in place of Gly with high catalytic efficiency and selectivity. Transfection of this GS mutant (F152A/S151G) and incubation of azido-Ala in cells efficiently afford the azide-containing glutathione derivative, γGlu-Cys-azido-Ala. Upon H2O2 treatment, clickable glutathione allowed for selective and sensitive detection of glutathionylated proteins by Western blotting or fluorescence after click reaction with biotin-alkyne or rhodamine-alkyne. This approach affords the efficient metabolic tagging of intracellular glutathione with small clickable functionality, providing a versatile handle for characterizing glutathionylation.
    DOI:
    10.1021/ja503946q
点击查看最新优质反应信息

文献信息

  • Synthesis of Hydroxymethylglutathione from Glutathione and<scp>L</scp>-Serine Catalyzed by Carboxypeptidase Y
    作者:Ryosuke OKUMURA、Yukio KOIZUMI、Jiro SEKIYA
    DOI:10.1271/bbb.67.434
    日期:2003.1
    found that carboxypeptidase Y (CPY), but not carboxypeptidase A, catalyzed hmGSH synthesis from glutathione and L-serine in vitro at acidic pH. CPY also catalyzed methylglutathione synthesis from glutathione and L-alanine. These findings suggested that a carboxypeptidase-like enzyme may be involved in hmGSH synthesis in vivo.
    羟甲基谷胱甘肽(γ-L-谷氨酰基-L-半胱氨酸-L-丝氨酸; hmGSH)存在于属于禾本科的许多物种中,但尚未发现hmGSH的生物合成途径。我们发现羧肽酶Y(CPY)而不是羧肽酶A可以在酸性pH下催化谷胱甘肽和L-丝氨酸合成hmGSH。CPY还催化由谷胱甘肽和L-丙氨酸合成甲基谷胱甘肽。这些发现表明,羧肽酶样酶可能与体内hmGSH的合成有关。
  • Methods of identifying compounds that induce expression of glutathione S-transferase
    申请人:——
    公开号:US20040143869A1
    公开(公告)日:2004-07-22
    This invention relates to glutathione transferase (GST) subunits to nucleic acid sequences encoding glutathione transferase subunits, and to uses of these glutathione transferase and coding sequences, especially in the field of plant biotechnology.
    本发明涉及谷胱甘肽转移酶(GST)亚基、编码谷胱甘肽转移酶亚基的核酸序列以及这些谷胱甘肽转移酶和编码序列的用途,特别是在植物生物技术领域。
  • US6730828B1
    申请人:——
    公开号:US6730828B1
    公开(公告)日:2004-05-04
  • Metabolic Synthesis of Clickable Glutathione for Chemoselective Detection of Glutathionylation
    作者:Kusal T. G. Samarasinghe、Dhanushka N. P. Munkanatta Godage、Garrett C. VanHecke、Young-Hoon Ahn
    DOI:10.1021/ja503946q
    日期:2014.8.20
    Glutathionylation involves reversible protein cysteine modification that regulates the function of numerous proteins in response to redox stimuli, thereby altering cellular processes. Herein we developed a selective and versatile approach to identifying glutathionylation by using a mutant of glutathione synthetase (GS). GS wild-type catalyzes coupling of γGlu-Cys to Gly to form glutathione. We generated a GS mutant that catalyzes azido-Ala in place of Gly with high catalytic efficiency and selectivity. Transfection of this GS mutant (F152A/S151G) and incubation of azido-Ala in cells efficiently afford the azide-containing glutathione derivative, γGlu-Cys-azido-Ala. Upon H2O2 treatment, clickable glutathione allowed for selective and sensitive detection of glutathionylated proteins by Western blotting or fluorescence after click reaction with biotin-alkyne or rhodamine-alkyne. This approach affords the efficient metabolic tagging of intracellular glutathione with small clickable functionality, providing a versatile handle for characterizing glutathionylation.
  • Use of <scp>L</scp> ‐[ <sup>15</sup> N] glutamic acid and homoglutathione to determine both glutathione synthesis and concentration by gas chromatography‐mass spectrometry (GCMS)
    作者:Bernard Humbert、Patrick Nguyen、Christiane Obled、Christine Bobin、Anne Vaslin、Shawn Sweeten、Dominique Darmaun
    DOI:10.1002/jms.185
    日期:2001.7
    A method for simultaneous measurement of both glutathione enrichment and concentration in a biological sample using gas chromatography mass spectrometry is described. The method is based on the preparation of N,S-ethoxycarbonylmethyl ester derivatives of glutathione, and the use of homoglutathione (glutamyl–cysteinyl–alanine) as an internal standard. A procedure for determination of glutamate concentration and enrichment is also reported. Both methods have within-day and day-to-day inter-assay coefficients of variation less than 5%, and recoveries of known added amounts of glutathione and glutamate are close to 100%. Taken together, these methods allowed determination of glutathione concentration and fractional synthesis rate in red blood cells using L-[15N] glutamic acid infusion. This approach was applied in vivo to investigate the effects of a 72 h fast, compared with a control overnight fast, on erythrocyte glutathione in a single dog. The 72 h fast was associated with a 39% decline in erythrocyte glutathione level, (2.9 ± 0.4 versus 4.7 ± 0.5 mmol l−1, fasting versus control) with no change in glutathione fractional synthesis (67.4 versus 71.3% d−1, fasting versus control). Copyright © 2001 John Wiley & Sons, Ltd.
    描述了一种使用气相色谱质谱法同时测量生物样品中谷胱甘肽富集和浓度的方法。该方法基于谷胱甘肽 N,S-乙氧基羰基甲酯衍生物的制备,并使用高谷胱甘肽(谷氨酰-半胱氨酰-丙氨酸)作为内标。还报道了测定谷氨酸浓度和富集的程序。两种方法的日内和日间分析间变异系数均小于 5%,已知添加量的谷胱甘肽和谷氨酸的回收率接近 100%。总而言之,这些方法允许使用 L-[15N] 谷氨酸输注测定红细胞中的谷胱甘肽浓度和分数合成率。该方法应用于体内,以研究与对照过夜禁食相比,72 小时禁食对单只狗红细胞谷胱甘肽的影响。 72 小时禁食与红细胞谷胱甘肽水平下降 39% 相关(2.9 ± 0.4 与 4.7 ± 0.5 mmol l−1,禁食与对照),而谷胱甘肽合成分数没有变化(67.4% 与 71.3% d−1,禁食)与对照)。版权所有 © 2001 约翰威利父子有限公司
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物