respectively. The alkylation enhances both the intensity and lifetime of the YbIII luminescence. The ErIII luminescence can be sensitised by the antenna effect, whereas the YbIII luminescence could involve a photoinduced electron transfer (PET). Finally, the evolution of the YbIII luminescence spectra shape due to the alkylation is directly correlated to the energy splitting of the MJ states that stem from
具有式 [Ln(hfac)3(L1)] 和 [Ln(hfac)3(
L2)] 的单核配合物,hfac– = 1,1,1,5,5,5-
六氟乙酰丙酮,L1 = 2-4 ,5-[4,5-双(
丙硫基)四
硫代富瓦烯基]-1H-
苯并咪唑-2-基}
吡啶和
L2 = 2-1-
甲基吡啶基-4,5-[4,5-双(
丙硫基)四
硫代富瓦烯基]- 1H-
苯并咪唑-2-基}
吡啶报告为 Ln = YIII、ErIII 和 YbIII。X 射线结构显示 Ln(hfac)3 部分与双齿 1-(2-
吡啶基甲基)
苯并咪唑受体配位。配位多面体被描述为或多或少扭曲的三角形十二面体棱镜(D2d 对称性),这取决于
配体的烷基化程度。这种畸变对磁和光物理特性的影响是由静磁测量和发光光谱的拟合决定的。最低能量
配体内电荷转移 (ILCT) 带 (21740 cm-1) 的辐照分别诱导 ErIII 和 YbIII 配合物的以
金属为中心的 4I13/2