Glycosidation of fructose-containing disaccharides using MCM-41 material as the catalyst
摘要:
Glycosidation of saccharides combines the essential characteristics of two major renewable classes, viz. triglycerides and carbohydrates, leading to biofriendly surfactants and emulsifiers. The development of the alkylglycosides derived from reducing disaccharides has lagged. because no efficient synthesis was available. We have found that ordered mesoporous materials of the MCM-41 type are active and selective catalysts for the glycosidation of disaccharides containing fructose at the reducing end, i.e., isomaltulose, lactulose and leucrose. No alcoholysis or hydrolysis of the glycosidic bond was observed, demonstrating the mildness of the MCM-41 catalyst. Leucrose was found to be less reactive than the two other disaccharides, in accordance with the absence of furanose forms in leucrose. (C) 2002 Elsevier Science Ltd. All rights reserved.
Glycosidation of fructose-containing disaccharides using MCM-41 material as the catalyst
作者:Anneke M van der Heijden、Tsz Chung Lee、Fred van Rantwijk、Herman van Bekkum
DOI:10.1016/s0008-6215(02)00171-4
日期:2002.11
Glycosidation of saccharides combines the essential characteristics of two major renewable classes, viz. triglycerides and carbohydrates, leading to biofriendly surfactants and emulsifiers. The development of the alkylglycosides derived from reducing disaccharides has lagged. because no efficient synthesis was available. We have found that ordered mesoporous materials of the MCM-41 type are active and selective catalysts for the glycosidation of disaccharides containing fructose at the reducing end, i.e., isomaltulose, lactulose and leucrose. No alcoholysis or hydrolysis of the glycosidic bond was observed, demonstrating the mildness of the MCM-41 catalyst. Leucrose was found to be less reactive than the two other disaccharides, in accordance with the absence of furanose forms in leucrose. (C) 2002 Elsevier Science Ltd. All rights reserved.