aliphatic olefins are often found to be unreactive in conventional alkenylation reactions. To address this problem, a cobalt catalyzed allylic selective dehydrogenative Heck reaction with internal aliphatic olefins has been developed. The method is highly regio- and stereoselective, the conditions are mild and a wide variety of functional groups can be tolerated. Remarkably, both internal and terminal aliphatic
Palladium‐Catalyzed Directed
<i>meta</i>
‐Selective C−H Allylation of Arenes: Unactivated Internal Olefins as Allyl Surrogates
作者:Tapas Kumar Achar、Xinglong Zhang、Rahul Mondal、M. S. Shanavas、Siddhartha Maiti、Sabyasachi Maity、Nityananda Pal、Robert S. Paton、Debabrata Maiti
DOI:10.1002/anie.201904608
日期:2019.7.22
Palladium(II)‐catalyzed meta‐selective C−H allylation of arenes has been developed utilizing synthetically inert unactivated acyclic internal olefins as allylic surrogates. The strong σ‐donating and π‐accepting ability of pyrimidine‐based directing group facilitates the olefin insertion by overcoming inertness of the typical unactivated internal olefins. Exclusive allyl over styrenyl product selectivity
BITTER TASTE MODIFIERS INCLUDING SUBSTITUTED 1-BENZYL-3-(1-(ISOXAZOL-4-YLMETHYL)-1H-PYRAZOL-4-YL)IMIDAZOLIDINE-2,4-DIONES AND COMPOSITIONS THEREOF
申请人:SENOMYX, INC.
公开号:US20160376263A1
公开(公告)日:2016-12-29
The present invention includes compounds and compositions known to modify the perception of bitter taste, and combinations of said compositions and compounds with additional compositions, compounds, and products. Exemplary compositions comprise one or more of the following: cooling agents; inactive drug ingredients; active pharmaceutical ingredients; food additives or foodstuffs; flavorants, or flavor enhancers; food or beverage products; bitter compounds; sweeteners; bitterants; sour flavorants; salty flavorants; umami flavorants; plant or animal products; compounds known to be used in pet care products; compounds known to be used in personal care products; compounds known to be used in home products; pharmaceutical preparations; topical preparations; cannabis-derived or cannabis-related products; compounds known to be used in oral care products; beverages; scents, perfumes, or odorants; compounds known to be used in consumer products; silicone compounds; abrasives; surfactants; warming agents; smoking articles; fats, oils, or emulsions; and/or probiotic bacteria or supplements.
The present invention relates generally to catalysts and processes for the Z-selective formation of internal olefin(s) from terminal olefin(s) via homo-metathesis reactions.
本发明通常涉及催化剂和过程,用于通过同型交换反应从末端烯烃中Z-选择性地形成内部烯烃。
Catalytic Allylic C−H Acetoxylation and Benzoyloxylation via Suggested (η<sup>3</sup>-Allyl)palladium(IV) Intermediates
作者:Lukasz T. Pilarski、Nicklas Selander、Dietrich Böse、Kálmán J. Szabó
DOI:10.1021/ol9023369
日期:2009.12.3
Palladium-catalyzed allylic acetoxylations and benzoyloxylations were carried out using iodonium salts. The reactions proceed under mild conditions with high regio- and stereoselectivity. The catalysis can be performed under both acidic and nonacidic conditions without use of BQ or other external oxidants and activator ligands. Deuterium labeling experiments clearly show that the catalytic reaction