Renewable high-density spiro-fuels from lignocellulose-derived cyclic ketones
作者:Junjian Xie、Xiangwen Zhang、Lun Pan、Genkuo Nie、Xiu-Tian-Feng E、Qing Liu、Peng Wang、Yafei Li、Ji-Jun Zou
DOI:10.1039/c7cc05101h
日期:——
Renewable high-density spiro-fuels are synthesized from lignocellulose-derived cyclicketones for the first time, which show higher density, higher neat heat of combustion and lower freezing point compared with other biofuels synthesized from the same feedstock, and thus represent a new type of renewable high-density fuel attractive for practical applications.
The catalytic conversion of cis-decalin was studied at a hydrogen pressure of 5.2 MPa and temperatures of 250-410 degrees C on iridium and platinum supported on non-acidic silica. The absence of catalytically active Bronsted acid sites was indicated by both FT-IR spectroscopy with pyridine as a probe and the selectivities in a catalytic test reaction, viz, the hydroconversion of n-octane. On iridium/silica, decalin hydroconversion starts at ca. 250-300 degrees C, and no skeletal isomerization occurs. The first step is rather hydrogenolytic opening of one six-membered ring to form the direct ring-opening products butylcyclohexane, 1-methyl-2-propylcyclohexane and 1,2-diethylcyclohexane. These show a consecutive hydrogenolysis, either of an endocyclic carbon-carbon bond into open-chain decanes or of an exocyclic carbon-carbon bond resulting primarily in methane and C-9 naphthenes. The latter can undergo a further endocyclic hydrogenolysis leading to open-chain nonanes. All individual C-10 and C-9 hydrocarbons predicted by this "direct ring-opening mechanism" were identified in the products generated on the iridium/silica catalysts. The carbon-number distributions of the hydrocracked products C-9- show a peculiar shape resembling a hammock and could be readily predicted by simulation of the direct ring-opening mechanism. Platinum on silica was found to require temperatures around 350-400 degrees C at which relatively large amounts of tetralin and naphthalene are formed. The most abundant primary products on Pt/silica are spiro[4.5]decane and butylcyclohexane which can be readily accounted for by the well known platinum-induced mechanisms described in the literature for smaller model hydrocarbons, namely the bond-shift isomerization mechanism and hydrogenolysis of a secondary-tertiary carbon-carbon bond in decalin. (C) 2012 Elsevier B.V. All rights reserved.
Alkylidenecarbenes from acyclic vinyl bromides and potassium tert-butoxide
作者:Joseph Wolinsky、Gregory W. Clark、Patricia C. Thorstenson
DOI:10.1021/jo00867a001
日期:1976.3
Zelinsky; Schuikin, Chemische Berichte, 1929, vol. 62, p. 2183