Biochemical and Structural Evaluation of Highly Selective 2-Arylbenzoxazole-Based Transthyretin Amyloidogenesis Inhibitors
摘要:
To develop potent transthyretin (TTR) amyloidogenesis inhibitors that also display high binding selectivity in blood, it proves useful to systematically optimize each of the three substructural elements that comprise a typical inhibitor: the two aryl rings and the linker joining them. In the first study, described herein, structural modifications to one aryl ring were evaluated by screening a library of 2-arylbenzoxazoles bearing thyroid hormone-like aryl substituents on the 2-aryl ring. Several potent and highly selective amyloidogenesis inhibitors were identified that exhibit minimal thyroid hormone nuclear receptor and COX-1 binding. High resolution crystal structures (1.3-1.5 angstrom) of three inhibitors (2f, 4f, and 4d) in complex with TTR were obtained to characterize their binding orientation. Collectively, the results demonstrate that thyroid hormone-like substitution patterns on one aryl ring lead to potent and highly selective TTR amyloidogenesis inhibitors that lack undesirable thyroid hormone receptor or COX-1 binding.
In-vitro Anti-cancer assay and apoptotic cell pathway of newly synthesized benzoxazole-N-heterocyclic hybrids as potent tyrosine kinase inhibitors
摘要:
A series of benzoxazole-N-heterocyclic hybrids have been synthesized by a one-pot strategy. Molecular docking study revealed that such compounds have the ability to inhibit enzyme protein tyrosine kinase. The findings of this work have been the successful synthesis of benzoxazole scaffolds, featuring hybrids of benzoxazole with quinoline and quinoxaline respectively. The molecular docking studies have showed these compounds to be inhibitors of tyrosine kinase enzyme which triggers growth of cancer cells. The cytotoxicity study of compounds 4a-f showed better potency against breast cancer cell lines MCF-7 and MDA-MB-231 in contrast to oral and lung cancer cell lines KB and A549. The tyrosine kinase activity was measured using Universal Tyrosine Kinase Assay kit using horseradish peroxide (HRP)-conjugated anti-phosphotyrosine kinase solution as a substrate. The compounds 4c exhibited maximum inhibition in the activity of enzyme tyrosine kinase with IC50 value 0.10 +/- 0.16 mu M, than other compounds which were studied and thus proved to be inhibitors of enzyme tyrosine kinase. The selective index of all four compounds was found out to be greater than two, indicating the non-toxic behaviour, i.e. good anti-cancer activity. Further, fluorescence microscopic study helped to characterize the mode of cell death, which was found to be late apoptosis as indicated by the orange fluorescence. The SAR analysis has also been carried out.
IDENTIFICATION AND TARGETED MODULATION OF GENE SIGNALING NETWORKS
申请人:CAMP4 THERAPEUTICS CORPORATION
公开号:US20210254056A1
公开(公告)日:2021-08-19
The present invention provides methods and compositions for the evaluation, alteration and/or optimization of gene signaling. Methods and systems are also provided which exploit the information generated in the identification of new targets and non-canonical signaling pathways.
Biochemical and Structural Evaluation of Highly Selective 2-Arylbenzoxazole-Based Transthyretin Amyloidogenesis Inhibitors
作者:Steven M. Johnson、Stephen Connelly、Ian A. Wilson、Jeffery W. Kelly
DOI:10.1021/jm0708735
日期:2008.1.1
To develop potent transthyretin (TTR) amyloidogenesis inhibitors that also display high binding selectivity in blood, it proves useful to systematically optimize each of the three substructural elements that comprise a typical inhibitor: the two aryl rings and the linker joining them. In the first study, described herein, structural modifications to one aryl ring were evaluated by screening a library of 2-arylbenzoxazoles bearing thyroid hormone-like aryl substituents on the 2-aryl ring. Several potent and highly selective amyloidogenesis inhibitors were identified that exhibit minimal thyroid hormone nuclear receptor and COX-1 binding. High resolution crystal structures (1.3-1.5 angstrom) of three inhibitors (2f, 4f, and 4d) in complex with TTR were obtained to characterize their binding orientation. Collectively, the results demonstrate that thyroid hormone-like substitution patterns on one aryl ring lead to potent and highly selective TTR amyloidogenesis inhibitors that lack undesirable thyroid hormone receptor or COX-1 binding.
In-vitro Anti-cancer assay and apoptotic cell pathway of newly synthesized benzoxazole-N-heterocyclic hybrids as potent tyrosine kinase inhibitors
作者:Sulaksha Desai、Vidya Desai、Sunil Shingade
DOI:10.1016/j.bioorg.2019.103382
日期:2020.1
A series of benzoxazole-N-heterocyclic hybrids have been synthesized by a one-pot strategy. Molecular docking study revealed that such compounds have the ability to inhibit enzyme protein tyrosine kinase. The findings of this work have been the successful synthesis of benzoxazole scaffolds, featuring hybrids of benzoxazole with quinoline and quinoxaline respectively. The molecular docking studies have showed these compounds to be inhibitors of tyrosine kinase enzyme which triggers growth of cancer cells. The cytotoxicity study of compounds 4a-f showed better potency against breast cancer cell lines MCF-7 and MDA-MB-231 in contrast to oral and lung cancer cell lines KB and A549. The tyrosine kinase activity was measured using Universal Tyrosine Kinase Assay kit using horseradish peroxide (HRP)-conjugated anti-phosphotyrosine kinase solution as a substrate. The compounds 4c exhibited maximum inhibition in the activity of enzyme tyrosine kinase with IC50 value 0.10 +/- 0.16 mu M, than other compounds which were studied and thus proved to be inhibitors of enzyme tyrosine kinase. The selective index of all four compounds was found out to be greater than two, indicating the non-toxic behaviour, i.e. good anti-cancer activity. Further, fluorescence microscopic study helped to characterize the mode of cell death, which was found to be late apoptosis as indicated by the orange fluorescence. The SAR analysis has also been carried out.