Thermodynamic, spectroscopic, and density functional theory studies of allyl aryl and prop-1-enyl aryl ethers. Part 1. Thermodynamic data of isomerization
Specific <i>Z</i>-Selectivity in the Oxidative Isomerization of Allyl Ethers to Generate Geometrically Defined <i>Z</i>-Enol Ethers Using a Cobalt(II)(salen) Complex Catalyst
作者:Guanxin Huang、Miaolin Ke、Yuan Tao、Fener Chen
DOI:10.1021/acs.joc.0c00004
日期:2020.4.17
synthesis of the geometrically less stable Z-enol ethers is challenging. An efficient Z-selective oxidative isomerization process of allyl ethers catalyzed by a cobalt(II) (salen) complex using N-fluoro-2,4,6-trimethylpyridinium trifluoromethanesulfonate (Me3NFPY•OTf) as an oxidant has been developed. Thermodynamically less stable Z-enol ethers were prepared in excellent yields with high geometric control.
Thermodynamic, spectroscopic, and density functional theory studies of allyl aryl and prop-1-enyl aryl ethers. Part 1. Thermodynamic data of isomerization
作者:Esko Taskinen
DOI:10.1039/b101837j
日期:——
A chemical equilibration study of the relative thermodynamic stabilities of seventy isomeric allyl aryl ethers (a) and (Z)-prop-1-enyl aryl ethers (b) in DMSO solution has been carried out. From the variation of the equilibrium constant with temperature the Gibbs energies, enthalpies, and entropies of isomerization at 298.15 K have been evaluated. Because of their low enthalpies, the (Z)-prop-1-enyl aryl ethers are strongly favored at equilibrium, the Gibbs energies of the a→b isomerization ranging from −12 to −23 kJ mol−1. The entropy contribution is negligible in most reactions, but occasionally small positive values less than +10 J K−1 mol−1 of the entropy of isomerization are found. The equilibration studies were also extended to involve two pairs of related isomeric ethers with a Me substituent on C(2) of the olefinic bond. The Me substituent was
found to increase the relative thermodynamic stability of the allylic ethers by ca. 3.4 kJ mol−1.