The present embodiments relate to substituted heterocyclic derivative therapeutic compounds, compositions comprising said compounds, and the use of said compounds and compositions for epigenetic regulation by inhibition of bromodomain-mediated recognition of acetyl lysine regions of proteins, such as histones. Said compositions and methods are useful for the treatment of diseases mediated by aberrant cell signalling, such as inflammatory disorders, cancer and neoplastic disease. Particular compounds described herein exhibit selective inhibitory activity against CBP compared with BRD4.
The present invention is directed to a reagent for use in the preparation of organomagnesium compounds as well as to a method of preparing such organomagnesium compounds. The present invention furthermore provides a method of preparing functionalized or unfunctionalized organic compounds as well as the use of the reagents of the present invention in the preparation of organometallic compounds and their reaction with electrophiles. Finally, the present invention is directed to the use of lithium salts - LiY in the preparation of organometallic compounds and their reactions with electrophiles and to an organometallic compound which is obtainable by the disclosed method.
Preparation of Polyfunctional Arylzinc Organometallics in Toluene by Halogen/Zinc Exchange Reactions
作者:Moritz Balkenhohl、Dorothée S. Ziegler、Alexandre Desaintjean、Leonie J. Bole、Alan R. Kennedy、Eva Hevia、Paul Knochel
DOI:10.1002/anie.201906898
日期:2019.9.9
toluene within 10 min to 5 h through an I/Zn or Br/Zn exchange reaction using bimetallic reagents of the general formula R'2 Zn⋅2 LiOR (R'=sBu, tBu, pTol). Highly sensitive functional groups, such as a triazine, a ketone, an aldehyde, or a nitro group, were tolerated in these exchange reactions, enabling the synthesis of a plethora of functionalized (hetero)arenes after quenching with various electrophiles
The present embodiments relate to substituted heterocyclic derivative therapeutic compounds, compositions comprising said compounds, and the use of said compounds and compositions for epigenetic regulation by inhibition of bromodomain-mediated recognition of acetyl lysine regions of proteins, such as histones. Said compositions and methods are useful for the treatment of diseases mediated by aberrant cell signalling, such as inflammatory disorders, cancer and neoplastic disease. Particular compounds described herein exhibit selective inhibitory activity against CBP compared with BRD4.