作者:John J. O'De、Janet G. Osteryoung
DOI:10.1021/ac960647v
日期:1997.2.1
Strongly adsorbed species on an electrode surface are used to create a stable, redox-modified surface. Square wave voltammetry is then used to degrade the surface electrochemically, as evidenced by the resulting voltammetric response. This process can be mathematically modeled as a quasi-reversible surface reaction coupled with a first-order irreversible surface reaction of the product. This is the simplest possible model that can explain a two-step surface reduction. Exemplary calculations for square wave voltammetry show a wide variety of peak shapes depending on rate constants and square wave amplitude. The reduction of Dimethyl Yellow (4-(dimethylamino)azobenzene) adsorbed on mercury is accurately described by this model. Characteristic parameters of the overall surface process are obtained from voltammograms by using the two-step model with nonlinear least-squares analysis (COOL). For Dimethyl Yellow in Britton−Robinson buffer (pH 6.00) at a surface concentration of 17.3 pmol cm-2, these parameters are as follows: standard potential, E10 = −0.397 ± 0.001 V vs SCE; transfer coefficient for the first step, α1 = 0.43 ± 0.02; rate constant for the first step, k10 = 103 ± 8 s-1; transfer coefficient for the second step, α2 = 0.11 ± 0.04; and rate constant for the second step, k20 (referenced to E10) = 11.1 ± 1.7 s-1. Uncertainties are 95% confidence intervals derived from a pool of 11 voltammograms collected at different square wave amplitudes (Esw = 0−100 mV).
电极表面的强吸附物种被用来创建一个稳定的氧化还原修饰表面。然后使用方波伏安法对表面进行电化学降解,由此产生的伏安反应可以证明这一点。这一过程在数学上可模拟为准可逆表面反应与产物的一阶不可逆表面反应。这是能够解释两步表面还原反应的最简单模型。方波伏安法的示例计算显示,根据速率常数和方波振幅的不同,峰形也多种多样。该模型准确地描述了吸附在汞上的二甲基黄(4-(二甲基氨基)偶氮苯)的还原过程。利用非线性最小二乘分析(COOL)的两步模型,可从伏安图上获得整个表面过程的特征参数。对于布氏-罗宾逊缓冲液(pH 6.00)中表面浓度为 17.3 pmol cm-2 的二甲基黄,这些参数如下:标准电位,E10 = -0.397 ± 0.001 V vs SCE;第一步的转移系数,α1 = 0.43 ± 0.02;第一步的速率常数 k10 = 103 ± 8 s-1;第二步的传递系数 α2 = 0.11 ± 0.04;第二步的速率常数 k20(参考 E10)= 11.1 ± 1.7 s-1。不确定度为 95% 的置信区间,由在不同方波振幅(Esw = 0-100 mV)下采集的 11 张伏安图得出。