Discovery of novel anti-angiogenesis agents. Part 6: Multi-targeted RTK inhibitors
摘要:
Angiogenesis is modulated by a multitude of pro-angiogenic factors including VEGFR-2, Tie-2, and EphB4. Moreover, their crosstalk also had been well elaborated. We have identified several diarylureabased VEGFR-2 inhibitors as potential anti-angiogenesis agents. As a continuation to our previous research, two series of diaryl malonamide and diaryl thiourea derivatives have been developed as multiplex VEGFR-2/Tie-2/EphB4 inhibitors. Interestingly, the biological evaluation indicated that several compounds bearing trifluoromethyl or trifluoromethoxyl exhibited promising multiplex inhibition against angiogenesis-related VEGFR-2, Tie-2, and EphB4. The representative compound (18a) displayed both potent multi-targeted RTK inhibition and considerable antiproliferative activities against human umbilical vein endothelial cells (EA.hy926). These results will contribute to the discovery of novel mutitargeted anti-angiogenesis agents. (C) 2017 Elsevier Masson SAS. All rights reserved.
Herein, we embarked on a structural optimization campaign aiming at the discovery of second generation anti-angiogenesis agents with our previously reported BPS-7 as lead compound. A library of 27 compounds has been afforded based on the highly conserved ATP-binding pocket of VEGFR-2, Tie-2, and EphB4. Several title compounds exhibited simultaneous inhibitory effects against three angiogenic RTKs. These compounds with a 'triplet' inhibition profile have been identified as novel anti-angiogenic and anticancer agents. The representative VDAU11 displayed prominent anti-angiogenic and anticancer potency and could be considered as a candidate for further optimization. These results indicate that N(pyridin-2-yl)acrylamide could serve as a novel hinge-binding group of triple inhibitors. (C) 2017 Elsevier Masson SAS. All rights reserved.
Discovery of novel anti-angiogenesis agents. Part 6: Multi-targeted RTK inhibitors
Angiogenesis is modulated by a multitude of pro-angiogenic factors including VEGFR-2, Tie-2, and EphB4. Moreover, their crosstalk also had been well elaborated. We have identified several diarylureabased VEGFR-2 inhibitors as potential anti-angiogenesis agents. As a continuation to our previous research, two series of diaryl malonamide and diaryl thiourea derivatives have been developed as multiplex VEGFR-2/Tie-2/EphB4 inhibitors. Interestingly, the biological evaluation indicated that several compounds bearing trifluoromethyl or trifluoromethoxyl exhibited promising multiplex inhibition against angiogenesis-related VEGFR-2, Tie-2, and EphB4. The representative compound (18a) displayed both potent multi-targeted RTK inhibition and considerable antiproliferative activities against human umbilical vein endothelial cells (EA.hy926). These results will contribute to the discovery of novel mutitargeted anti-angiogenesis agents. (C) 2017 Elsevier Masson SAS. All rights reserved.