Synthesis of Alkyl Aryl Sulfones via Reaction of N-Arylsulfonyl Hydroxyamines with Electron-Deficient Alkenes
作者:Yunhui Bin、Ruimao Hua
DOI:10.3390/molecules22010039
日期:——
Alkyl aryl sulfones were prepared in high yields via the reaction of N-arylsulfonyl hydroxylamines with electron-deficient alkenes. These reactions have the advantages of simplicity, easily available starting materials and mild reaction conditions.
sulfonamides as sulfenylating agents has been established. In the presence of catalytic amounts of iodine and N-hydroxysuccinimide, N-hydroxy sulfonamides participated in sulfenylation with indoles, 7-azaindole, N-methyl pyrrole, and 2-naphthol to afford structurally diverse thioethers in moderate to excellent yields with very high regioselectivity.
N-hydroxylsulfonamide derivatives as new physiologically useful nitroxyl donors
申请人:Johns Hopkins University School of Medicine
公开号:EP2489350A1
公开(公告)日:2012-08-22
The invention relates to N-hydroxysulfonamide derivatives that donate nitroxyl (HNO) under physiological conditions and are useful in treating and/or preventing the onset and/or development of diseases or conditions that are responsive to nitroxyl therapy, including heart failure and ischemia/reperfusion injury. Novel N-hydroxysulfonamide derivatives release NHO at a controlled rate under physiological conditions, and the rate of HNO release is modulated by varying the nature and location of functional groups on the N-hydroxysulfonamide derivatives.
N-HYDROXYLSULFONAMIDE DERIVATIVES AS NEW PHYSIOLOGICALLY USEFUL NITROXYL DONORS
申请人:The Johns Hopkins University
公开号:EP3124471A1
公开(公告)日:2017-02-01
The invention relates to N-hydroxysulfonamide derivatives that donate nitroxyl (HNO) under physiological conditions and are useful in treating and/or preventing the onset and/or development of diseases or conditions that are responsive to nitroxyl therapy, including heart failure and ischemia/reperfusion injury. Novel N-hydroxysulfonamide derivatives release NHO at a controlled rate under physiological conditions, and the rate of HNO release is modulated by varying the nature and location of functional groups on the N-hydroxysulfonamide derivatives.