摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3-叠氮丁烷-1,2,4-三醇 | 1000855-31-1

中文名称
3-叠氮丁烷-1,2,4-三醇
中文别名
——
英文名称
3-azidobutane-1,2,4-triol
英文别名
——
3-叠氮丁烷-1,2,4-三醇化学式
CAS
1000855-31-1
化学式
C4H9N3O3
mdl
——
分子量
147.134
InChiKey
WTDMEGHZIYGENC-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -0.8
  • 重原子数:
    10
  • 可旋转键数:
    4
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    75
  • 氢给体数:
    3
  • 氢受体数:
    5

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    Use of dihydroxyacetone phosphate-dependent aldolases in the synthesis of deoxy aza sugars
    摘要:
    The use of fructose-1,6-diphosphate (FDP), fuculose-1-phosphate (Fuc-1-P) and rhamnulose-1-phosphate (Rham-1-P) aldolases in organic synthesis is described. Fuc-1-P, Rham-1-P, and their phosphate-free species have been prepared and characterized. Both Fuc-1-P and Rham-1-P aldolases accept 3-azido-2-hydroxypropanal as a substrate to form L-omega-azidoketose phosphates, which upon dephosphorylation and hydrogenolysis on Pd/C, gave 1-deoxyazasugars structurally related to D-galactose and L-mannose. Hydrogenolysis of the enzyme products azidoketose 1-phosphates, however, gave 1,6-dideoxyazasugars structurally related to 6-deoxygalactose and L-rhamnose. Explanations for the stereoselectivity in the hydrogenolysis reactions were provided. Similarly, FDP aldolase catalyzed the aldol condensation reaction with 2-azido-3-hydroxypropanal to afford a new synthesis of 2(R),5(S)-bis(hydroxymethyl)-3(R),4(R)-dihydroxypyrrolidine, a potent inhibitor of a number of glycosidases. A new empirical formula is developed to relate the inhibition constants and inhibitor binding for alpha- and beta-glucosidases.
    DOI:
    10.1021/jo00022a013
  • 作为产物:
    描述:
    反-2-丁烯-1,4-二醇 以80%的产率得到3-叠氮丁烷-1,2,4-三醇
    参考文献:
    名称:
    d-Fructose-6-Phosphate Aldolase-Catalyzed One-Pot Synthesis of Iminocyclitols
    摘要:
    A one-pot chemoenzymatic method for the synthesis of a variety of new iminocyclitols from readily available, non-phosphorylated donor substrates has been developed. The method utilizes the recently discovered fructose-6-phosphate aldolase (FSA), which is functionally distinct from known aldolases in its tolerance of different donor substrates as well as acceptor substrates. Kinetic studies were performed with dihydroxyacetone (DHA), the presumed endogenous substrate for FSA, as well as hydroxy acetone (HA) and 1-hydroxy-2-butanone (HB) as donor substrates, in each case using glyceraidehyde-3-phosphate as acceptor substrate. Remarkably, FSA used the three donor substrates with equal efficiency, with k(cat)/K-M-values of 33, 75, and 20 M-1 s(-1), respectively. This level of donor substrate tolerance is unprecedented for an aldolase. Furthermore, DHA, HA, and HB were accepted as donors in FSA-catalyzed aldol reactions with a variety of azido- and Cbz-amino aldehyde acceptors. The broad substrate tolerance of FSA and the ability to circumvent the need for phosphorylated substrates allowed for one-pot synthesis of a number of known and novel iminocyclitols in good yields, and in a very concise fashion. New iminocyclitols were assayed as inhibitors against a panel of glycosidases. Compounds 15 and 16 were specific alpha-mannosidase inhibitors, and 24 and 26 were potent and selective inhibitors of beta-N-acetylglucosaminidases in the submicromolar range. Facile access to these compounds makes them attractive core structures for further inhibitor optimization.
    DOI:
    10.1021/ja073911i
点击查看最新优质反应信息

文献信息

  • Cotterill, Ian C.; Shelton, Michael C.; Machemer, Daniel E. W., Journal of the Chemical Society. Perkin transactions I, 1998, # 7, p. 1335 - 1341
    作者:Cotterill, Ian C.、Shelton, Michael C.、Machemer, Daniel E. W.、Henderson, Darla P.、Toone, Eric J.
    DOI:——
    日期:——
  • <scp>d</scp>-Fructose-6-Phosphate Aldolase-Catalyzed One-Pot Synthesis of Iminocyclitols
    作者:Masakazu Sugiyama、Zhangyong Hong、Pi-Hui Liang、Stephen M. Dean、Lisa J. Whalen、William A. Greenberg、Chi-Huey Wong
    DOI:10.1021/ja073911i
    日期:2007.11.28
    A one-pot chemoenzymatic method for the synthesis of a variety of new iminocyclitols from readily available, non-phosphorylated donor substrates has been developed. The method utilizes the recently discovered fructose-6-phosphate aldolase (FSA), which is functionally distinct from known aldolases in its tolerance of different donor substrates as well as acceptor substrates. Kinetic studies were performed with dihydroxyacetone (DHA), the presumed endogenous substrate for FSA, as well as hydroxy acetone (HA) and 1-hydroxy-2-butanone (HB) as donor substrates, in each case using glyceraidehyde-3-phosphate as acceptor substrate. Remarkably, FSA used the three donor substrates with equal efficiency, with k(cat)/K-M-values of 33, 75, and 20 M-1 s(-1), respectively. This level of donor substrate tolerance is unprecedented for an aldolase. Furthermore, DHA, HA, and HB were accepted as donors in FSA-catalyzed aldol reactions with a variety of azido- and Cbz-amino aldehyde acceptors. The broad substrate tolerance of FSA and the ability to circumvent the need for phosphorylated substrates allowed for one-pot synthesis of a number of known and novel iminocyclitols in good yields, and in a very concise fashion. New iminocyclitols were assayed as inhibitors against a panel of glycosidases. Compounds 15 and 16 were specific alpha-mannosidase inhibitors, and 24 and 26 were potent and selective inhibitors of beta-N-acetylglucosaminidases in the submicromolar range. Facile access to these compounds makes them attractive core structures for further inhibitor optimization.
  • Use of dihydroxyacetone phosphate-dependent aldolases in the synthesis of deoxy aza sugars
    作者:Kevin K. C. Liu、Tetsuya Kajimoto、Lihren Chen、Ziyang Zhong、Yoshitaka Ichikawa、Chi Huey Wong
    DOI:10.1021/jo00022a013
    日期:1991.10
    The use of fructose-1,6-diphosphate (FDP), fuculose-1-phosphate (Fuc-1-P) and rhamnulose-1-phosphate (Rham-1-P) aldolases in organic synthesis is described. Fuc-1-P, Rham-1-P, and their phosphate-free species have been prepared and characterized. Both Fuc-1-P and Rham-1-P aldolases accept 3-azido-2-hydroxypropanal as a substrate to form L-omega-azidoketose phosphates, which upon dephosphorylation and hydrogenolysis on Pd/C, gave 1-deoxyazasugars structurally related to D-galactose and L-mannose. Hydrogenolysis of the enzyme products azidoketose 1-phosphates, however, gave 1,6-dideoxyazasugars structurally related to 6-deoxygalactose and L-rhamnose. Explanations for the stereoselectivity in the hydrogenolysis reactions were provided. Similarly, FDP aldolase catalyzed the aldol condensation reaction with 2-azido-3-hydroxypropanal to afford a new synthesis of 2(R),5(S)-bis(hydroxymethyl)-3(R),4(R)-dihydroxypyrrolidine, a potent inhibitor of a number of glycosidases. A new empirical formula is developed to relate the inhibition constants and inhibitor binding for alpha- and beta-glucosidases.
查看更多