We have systematically investigated the effect of stoichiometry: [divalent doping (x), controlled oxygen content (delta) by vacuum annealing at elevated temperatures, and substitution (y) of Ru] and structure (substrate induced strain and its relaxation on annealing) on the magnetic/transport properties of the colossal magnetoresistive La1-xSrxMn1-yRuyO3+delta bulk and thin films prepared by both sol-gel and pulsed laser deposition techniques. The following results have been found: (1) Oxygen-reduced La0.7Sr0.3MnOz show a larger resistivity and lower T-c than the corresponding bulk materials. Moreover, their resistivity acid MR behavior can be precisely controlled by vacuum annealing and, in fact, they duplicate all the salient features observed in divalent-doped manganites. (2) The metal-insulator transitions Of thin films grown on lattice-matched substrates is observed to be a function of thickness due to the accommodation of epitaxial strain and the associated Mn-O-Mn bond-distortions. (3) Ru doped La0.7Sr0.3Mn1-yRuyO3, 0 less than or equal to y less than or equal to 0.2 samples show a surprisingly small decrease in T-c. This is attributed to the exceptional ability of Ru, unlike other substitutions in Mn sites, to stabilize magnetic ordering at elevated temperatures. (4) Oxygen K-edge (core level excitation of oxygen 1s electrons into empty p-like states) electron-energy-loss spectra of divalent-doped La1-xSrxMnO3 (0