The total synthesis of the linear trihydroxamate siderophore, Danoxamine, is described. Danoxamine is a siderophore component of the naturally occurring siderophore-drug conjugates Salmycin A-D. The synthesis of Danoxamine features a series of coupling reactions involving N-(5-benzyloxypentyl)-O-benzylhydroxylamine being linked by a succinoyl linker to N-(benzyloxy)-1,5-pentanediamine. Two more succinoyl linkers and another N-(benzyloxy)-1,5-pentanediamine were used in coupling reactions to afford the fully protected siderophore. The linear tetrabenzyl-protected trihydroxamate was deprotected to afford the natural product Danoxamine.
Trihydroxamate Siderophore–Fluoroquinolone Conjugates Are Selective Sideromycin Antibiotics that Target Staphylococcus aureus
作者:Timothy A. Wencewicz、Timothy E. Long、Ute Möllmann、Marvin J. Miller
DOI:10.1021/bc300610f
日期:2013.3.20
Siderophores are multidentate iron(III) chelators used by bacteria for iron assimilation. Sideromycins, also called siderophore-antibiotic conjugates, are a unique subset of siderophores that enter bacterial cells via siderophore uptake pathways and deliver the toxic antibiotic in a "Trojan horse" fashion. Sideromycins represent a novel antibiotic delivery technology with untapped potential for developing sophisticated microbe-selective antibacterial agents that limit the emergence of bacterial resistance. The chemical synthesis of a series of mono-, bis-, and trihydroxamate sideromycins are described here along with their biological evaluation in antibacterial susceptibility assays. The linear hydroxamate siderophores used for the sideromycins in this study were derived from the ferrioxamine family and inspired by the naturally occurring salmycin sideromycins. The antibacterial agents used were a beta-lactam carbacepholosporin, Lorabid, and a fluoroquinolone, ciprofloxacin, chosen for the different locations of their biological targets, the periplasm (extracellular) and the cytoplasm (intracellular). The linear hydroxamate-based sideromycins were selectively toxic toward Gram-positive bacteria, especially Staphylococcus aureus SG511 (MIC = 1.0 mu M for the trihydroxamate-fluoroquinolone sideromycin). Siderophore-sideromycin competition assays demonstrated that only the fluoroquinolone sideromycins required membrane transport to reach their cytoplasmic biological target and that a trihydroxamate siderophore backbone was required for protein-mediated active transport of the sideromycins into S. aureus cells via siderophore uptake pathways. This work represents a comprehensive study of linear hydroxamate sideromycins and teaches how to build effective hydroxamate-based sideromycins as Gram-positive selective antibiotic agents.
Iron(III)-Templated Macrolactonization of Trihydroxamate Siderophores
作者:Timothy A. Wencewicz、Allen G. Oliver、Marvin J. Miller
DOI:10.1021/ol301869x
日期:2012.9.7
A method was developed to synthesize macrocyclic trihydroxamate siderophores using optimized Yamaguchi macrolactonization conditions. The natural ability of siderophores to bind iron(III) was exploited to template the reactions and allowed for rapid reaction rates, high product conversions, and the formation of large macrolactone rings up to 35 atoms. An X-ray structure of a 33-membered macrolactone siderophore-Fe(III) complex is presented.