Dehydration reactions in water have been realized by a surfactant-type catalyst, dodecylbenzenesulfonic acid (DBSA). These reactions include dehydrative esterification, etherification, thioetherification, and dithioacetalization. In these reactions, DBSA and substrates form emulsion droplets whose interior is hydrophobic enough to exclude water molecules generated during the reactions. Detailed studies on the esterification revealed that the yields of esters were affected by temperature, amounts of DBSA used, and the substrates. Esters were obtained in high yields for highly hydrophobic substrates. On the basis of the difference in hydrophobicity of the substrates, unique selective esterification and etherification in water were attained. Furthermore, chemospecific, three-component reactions under DBSA-catalyzed conditions were also found to proceed smoothly. This work not only may lead to environmentally benign systems but also will provide a new aspect of organic chemistry in water.
OZONOLYSIS REACTIONS IN LIQUID CO2 AND CO2-EXPANDED SOLVENTS
申请人:University Of Kansas
公开号:EP2209547A2
公开(公告)日:2010-07-28
Ozonolysis Reactions in Liquid CO2 and CO2-Expanded Solvents
申请人:UNIVERSITY OF KANSAS
公开号:US20130240781A1
公开(公告)日:2013-09-19
A method for increasing ozone concentration in a liquid can include: providing a gas having ozone; introducing the ozone-containing gas into a liquid, wherein the liquid and ozone combination has a temperature between about 0.8 and about 1.5 times the critical temperature of ozone; and increasing isothermally, the pressure of the ozone-containing gas above the liquid to about 0.3 to about 5 times the critical pressure of ozone so as to increase the ozone concentration in the liquid. The temperature is expressed in absolute units (Kelvin or Rankin). The method can be used for removing ozone from a gas or for purifying ozone. The liquid having a high ozone concentration can be used for ozonolysis of a substrate.