摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5′-O-D-valyl-decitabine | 1423539-51-8

中文名称
——
中文别名
——
英文名称
5′-O-D-valyl-decitabine
英文别名
[(2R,3S,5R)-5-(4-amino-2-oxo-1,3,5-triazin-1-yl)-3-hydroxyoxolan-2-yl]methyl (2R)-2-amino-3-methylbutanoate
5′-O-D-valyl-decitabine化学式
CAS
1423539-51-8
化学式
C13H21N5O5
mdl
——
分子量
327.34
InChiKey
VCXBBRJDDJPDSZ-SGIHWFKDSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -1.1
  • 重原子数:
    23
  • 可旋转键数:
    6
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.69
  • 拓扑面积:
    153
  • 氢给体数:
    3
  • 氢受体数:
    6

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    在 palladium 10% on activated carbon 、 氢气 作用下, 以 乙酸乙酯异丙醇 为溶剂, 反应 4.0h, 生成 5′-O-D-valyl-decitabine
    参考文献:
    名称:
    A Carrier-Mediated Prodrug Approach To Improve the Oral Absorption of Antileukemic Drug Decitabine
    摘要:
    Decitabine (5-aza-2'-deoxycytidine, DAC) is a novel DNA rnethyltransferase (DNMT) inhibitor for the treatment of myelodysplastic syndrome, acute and chronic myeloid leukemia. However, it exhibits a low oral bioavailability (only 9% in mice), because of low permeability across the intestine membrane and rapid metabolism to inactive metabolite. To utilize the carrier-mediated prodrug approach for improved absorption of decitabine, a series of amino acid-decitabine conjugates were synthesized to target the intestinal membrane transporter, hPepT1. The Caco-2 permeability of the prodrugs was screened, and two L-val (aliphatic, compound 4a) and L-phe (aromatic, compound 4c) prodrugs with higher permeability were selected for further studies. The uptake of Gly-Sar by Caco-2 cells could be competitively inhibited by compounds 4a and 4c, with IC50 being 2.20 +/- 028 mM and 3.46 +/- 0.16 mM, respectively. The uptake of compounds 4a and 4c was markedly increased in the leptin-treated Caco-2 cells compared with the control Caco-2 cells, suggesting that hPepT1-mediated transport contributes to oral absorption of compounds 4a and 4c The prodrugs were evaluated for their stability in various phosphate buffers, rat plasma, tissue homogenates, and gastrointestinal fluids. Compounds 4a and 4c were stable in gastrointestinal tract at pH 6.0 but could be quickly converted into DAC in plasma and tissue homogenates after absorption. The oral absolute bioavailability of DAC was 46.7%, 50.9%, and 26.9% after compounds 4a, 4c, and DAC were orally administered to rats at a dose of 15 mg/kg, respectively. The bioavailability of compounds 4a and 4c in rats was both reduced to about 32% when orally coadministrated with typical hPepT1 substrate Gly-Sar (150 mg/kg). Overall, compounds 4a and 4c can significantly enhance the intestinal membrane permeability of DAC, followed by rapid and mostly bioactivation to parent drug in intestinal and hepatic tissues before entry into systemic circulation, and eventually improve oral bioavailability of DAC in rats. The hPepT1-targeted prodrug strategy is a promising strategy to improve the oral bioavailability of poorly absorbed decitabine.
    DOI:
    10.1021/mp400233x
点击查看最新优质反应信息

文献信息

  • A Carrier-Mediated Prodrug Approach To Improve the Oral Absorption of Antileukemic Drug Decitabine
    作者:Youxi Zhang、Jin Sun、Yikun Gao、Ling Jin、Youjun Xu、He Lian、Yongbing Sun、Yinghua Sun、Jianyu Liu、Rui Fan、Tianhong Zhang、Zhonggui He
    DOI:10.1021/mp400233x
    日期:2013.8.5
    Decitabine (5-aza-2'-deoxycytidine, DAC) is a novel DNA rnethyltransferase (DNMT) inhibitor for the treatment of myelodysplastic syndrome, acute and chronic myeloid leukemia. However, it exhibits a low oral bioavailability (only 9% in mice), because of low permeability across the intestine membrane and rapid metabolism to inactive metabolite. To utilize the carrier-mediated prodrug approach for improved absorption of decitabine, a series of amino acid-decitabine conjugates were synthesized to target the intestinal membrane transporter, hPepT1. The Caco-2 permeability of the prodrugs was screened, and two L-val (aliphatic, compound 4a) and L-phe (aromatic, compound 4c) prodrugs with higher permeability were selected for further studies. The uptake of Gly-Sar by Caco-2 cells could be competitively inhibited by compounds 4a and 4c, with IC50 being 2.20 +/- 028 mM and 3.46 +/- 0.16 mM, respectively. The uptake of compounds 4a and 4c was markedly increased in the leptin-treated Caco-2 cells compared with the control Caco-2 cells, suggesting that hPepT1-mediated transport contributes to oral absorption of compounds 4a and 4c The prodrugs were evaluated for their stability in various phosphate buffers, rat plasma, tissue homogenates, and gastrointestinal fluids. Compounds 4a and 4c were stable in gastrointestinal tract at pH 6.0 but could be quickly converted into DAC in plasma and tissue homogenates after absorption. The oral absolute bioavailability of DAC was 46.7%, 50.9%, and 26.9% after compounds 4a, 4c, and DAC were orally administered to rats at a dose of 15 mg/kg, respectively. The bioavailability of compounds 4a and 4c in rats was both reduced to about 32% when orally coadministrated with typical hPepT1 substrate Gly-Sar (150 mg/kg). Overall, compounds 4a and 4c can significantly enhance the intestinal membrane permeability of DAC, followed by rapid and mostly bioactivation to parent drug in intestinal and hepatic tissues before entry into systemic circulation, and eventually improve oral bioavailability of DAC in rats. The hPepT1-targeted prodrug strategy is a promising strategy to improve the oral bioavailability of poorly absorbed decitabine.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物