Synthesis of perfluoroalkylated xylitol ethers and esters: new surfactants for biomedical uses
摘要:
New, well-defined surfactants and cosurfactants were synthesized with the objective of enhancing the stability of fluorocarbon emulsions destined to serve as oxygen carriers for biomedical applications. Monoperfluoroalkylated ethers of xylitol were achieved by addition of perfluoroalkyl iodide on the double bond of a protected xylitol allyl ether in a one-step addition-elimination reaction. Monoesters were obtained specifically on position 5 by treating 1,2:3,4-di-O-isopropylidenexylitol with perfluoroalkylated acid chlorides of various chain lengths in pyridine at room temperature. The products display strong surface activity and produce a remarkable synergistic stabilization of a fluorocarbon/Pluronic F-68 type emulsion. Biocompatibility data are reported, which include in vitro toxicity tests on Namalva cell cultures and hemolysis tests on human blood cells; the latter was found to decrease as the length of the F-alkyl chain increased. IV injection in mice (n = 10) showed that these products were innocuous at 400-1000 mg/kg of body weight. Preliminary exchange-perfusion experiments on rats with an emulsion containing the F-octyl xylitol ether were encouraging.
Synthesis of perfluoroalkylated xylitol ethers and esters: new surfactants for biomedical uses
摘要:
New, well-defined surfactants and cosurfactants were synthesized with the objective of enhancing the stability of fluorocarbon emulsions destined to serve as oxygen carriers for biomedical applications. Monoperfluoroalkylated ethers of xylitol were achieved by addition of perfluoroalkyl iodide on the double bond of a protected xylitol allyl ether in a one-step addition-elimination reaction. Monoesters were obtained specifically on position 5 by treating 1,2:3,4-di-O-isopropylidenexylitol with perfluoroalkylated acid chlorides of various chain lengths in pyridine at room temperature. The products display strong surface activity and produce a remarkable synergistic stabilization of a fluorocarbon/Pluronic F-68 type emulsion. Biocompatibility data are reported, which include in vitro toxicity tests on Namalva cell cultures and hemolysis tests on human blood cells; the latter was found to decrease as the length of the F-alkyl chain increased. IV injection in mice (n = 10) showed that these products were innocuous at 400-1000 mg/kg of body weight. Preliminary exchange-perfusion experiments on rats with an emulsion containing the F-octyl xylitol ether were encouraging.
New polyhydroxylated and highly fluorinated compounds, their preparation and their use as surfactants
申请人:ATTA
公开号:EP0255443A1
公开(公告)日:1988-02-03
Compounds having a polyhydroxylated hydrophilic moiety, a highly fluorinated moiety and a functional junction group linking said moieties together, wherein said hydrophilic moiety is derived from a polyol or an aminopolyol, and wherein said highly fluorinated moiety consists of a fluorocarbon group wherein at least 50 % of the atoms bonded to the carbon skeleton are fluorine atoms, the other atoms bonded to the carbon skeleton being hydrogen, chlorine or bromine atoms, said highly fluorinated moiety containing at least 4 fluorine atoms ; as well as the internal ethers and ketals thereof ; process for their preparation ; and compositions containing said compounds as surfactants together with non polar compounds, for use as gas carriers.
ZARIF, LEILA;GREINER, JACQUES;PACE, SIMONNE;RIESS, JEAN G., J. MED. CHEM., 33,(1990) N, C. 1262-1269
作者:ZARIF, LEILA、GREINER, JACQUES、PACE, SIMONNE、RIESS, JEAN G.
DOI:——
日期:——
US4985550A
申请人:——
公开号:US4985550A
公开(公告)日:1991-01-15
Synthesis of perfluoroalkylated xylitol ethers and esters: new surfactants for biomedical uses
作者:Leila Zarif、Jacques Greiner、Simonne Pace、Jean G. Riess
DOI:10.1021/jm00166a028
日期:1990.4
New, well-defined surfactants and cosurfactants were synthesized with the objective of enhancing the stability of fluorocarbon emulsions destined to serve as oxygen carriers for biomedical applications. Monoperfluoroalkylated ethers of xylitol were achieved by addition of perfluoroalkyl iodide on the double bond of a protected xylitol allyl ether in a one-step addition-elimination reaction. Monoesters were obtained specifically on position 5 by treating 1,2:3,4-di-O-isopropylidenexylitol with perfluoroalkylated acid chlorides of various chain lengths in pyridine at room temperature. The products display strong surface activity and produce a remarkable synergistic stabilization of a fluorocarbon/Pluronic F-68 type emulsion. Biocompatibility data are reported, which include in vitro toxicity tests on Namalva cell cultures and hemolysis tests on human blood cells; the latter was found to decrease as the length of the F-alkyl chain increased. IV injection in mice (n = 10) showed that these products were innocuous at 400-1000 mg/kg of body weight. Preliminary exchange-perfusion experiments on rats with an emulsion containing the F-octyl xylitol ether were encouraging.