A catalytic asymmetric version of the exoselective [C+NC+CC] reaction is reported. This multicomponent reaction utilizes a readily prepared achiral glycyl sultam as the "NC" component and commercially available catalyst components. The method can be applied to a variety of aldehydes ("C" component) and activated alkenes ("CC" component) to provide substituted pyrrolidines in good yields and high enantioselectivities. Of particular note is the ability to employ labile enolizable aldehydes (e.g., acetaldehyde and propionaldehyde) in this reaction.
A catalytic asymmetric version of the exoselective [C+NC+CC] reaction is reported. This multicomponent reaction utilizes a readily prepared achiral glycyl sultam as the "NC" component and commercially available catalyst components. The method can be applied to a variety of aldehydes ("C" component) and activated alkenes ("CC" component) to provide substituted pyrrolidines in good yields and high enantioselectivities. Of particular note is the ability to employ labile enolizable aldehydes (e.g., acetaldehyde and propionaldehyde) in this reaction.
A catalytic asymmetric version of the exoselective [C+NC+CC] reaction is reported. This multicomponent reaction utilizes a readily prepared achiral glycyl sultam as the "NC" component and commercially available catalyst components. The method can be applied to a variety of aldehydes ("C" component) and activated alkenes ("CC" component) to provide substituted pyrrolidines in good yields and high enantioselectivities. Of particular note is the ability to employ labile enolizable aldehydes (e.g., acetaldehyde and propionaldehyde) in this reaction.