Soluble Narrow Band Gap and Blue Propylenedioxythiophene-Cyanovinylene Polymers as Multifunctional Materials for Photovoltaic and Electrochromic Applications
摘要:
A family of soluble narrow band gap donor- acceptor conjugated polymers based on dioxythiophenes and cyanovinylenes is reported. The polymers were synthesized using Knoevenagel polycondensation or Yamamoto coupling polymerizations to yield polymers with molecular weights on the order of 10000-20000 g/mol, which possess solubility in common organic solvents. Thin film optical measurements revealed narrow band gaps of 1.5-1.8 eV, which gives the polymers a strong overlap of the solar spectrum. The energetic positions of the band edges were determined by cyclic voltammetry and differential pulse voltammetry and demonstrate that the polymers are both air stable and show a strong propensity for photoinduced charge transfer to fullerene acceptors. Such measurements also suggest that the polymers can be both p- and n-type doped, which is supported by spectroelectrochemical results. These polymers have been investigated as electron donors in photovoltaic devices in combination with PCBM ([6,6]-phenyl C-61-butyric acid methyl ester) as an electron acceptor based on the near ideal band structures designed into the polymers. Efficiencies as high as 0.2% (AM1.5) with short circuit current densities as high as 1.2-1.3 mA/cm(2) have been observed in polymer/PCBM (1: 4 by weight) devices and external quantum efficiencies of more than 10% have been observed at wavelengths longer than 600 nm. The electrochromic properties of the narrow band gap polymers are also of interest as the polymers show three accessible color states changing from an absorptive blue or purple in the neutral state to a transmissive sky-blue or gray in the oxidized and reduced forms. The wide electrochemical range of electrochromic activity coupled with the strong observed changes in transmissivity between oxidation states makes these materials potentially interesting for application to electrochromic displays.
Soluble Narrow Band Gap and Blue Propylenedioxythiophene-Cyanovinylene Polymers as Multifunctional Materials for Photovoltaic and Electrochromic Applications
摘要:
A family of soluble narrow band gap donor- acceptor conjugated polymers based on dioxythiophenes and cyanovinylenes is reported. The polymers were synthesized using Knoevenagel polycondensation or Yamamoto coupling polymerizations to yield polymers with molecular weights on the order of 10000-20000 g/mol, which possess solubility in common organic solvents. Thin film optical measurements revealed narrow band gaps of 1.5-1.8 eV, which gives the polymers a strong overlap of the solar spectrum. The energetic positions of the band edges were determined by cyclic voltammetry and differential pulse voltammetry and demonstrate that the polymers are both air stable and show a strong propensity for photoinduced charge transfer to fullerene acceptors. Such measurements also suggest that the polymers can be both p- and n-type doped, which is supported by spectroelectrochemical results. These polymers have been investigated as electron donors in photovoltaic devices in combination with PCBM ([6,6]-phenyl C-61-butyric acid methyl ester) as an electron acceptor based on the near ideal band structures designed into the polymers. Efficiencies as high as 0.2% (AM1.5) with short circuit current densities as high as 1.2-1.3 mA/cm(2) have been observed in polymer/PCBM (1: 4 by weight) devices and external quantum efficiencies of more than 10% have been observed at wavelengths longer than 600 nm. The electrochromic properties of the narrow band gap polymers are also of interest as the polymers show three accessible color states changing from an absorptive blue or purple in the neutral state to a transmissive sky-blue or gray in the oxidized and reduced forms. The wide electrochemical range of electrochromic activity coupled with the strong observed changes in transmissivity between oxidation states makes these materials potentially interesting for application to electrochromic displays.
Copolymers for iodide detection and methods thereof
申请人:King Fahd University of Petroleum and Minerals
公开号:US10533079B2
公开(公告)日:2020-01-14
Copolymers having thiophene based and vinylene based moieties. Methods of producing the copolymers, and methods of utilizing the copolymers as chromogenic sensors for selective detection of iodide anion are also provided.
Spectral Broadening in MEH-PPV:PCBM-Based Photovoltaic Devices via Blending with a Narrow Band Gap Cyanovinylene−Dioxythiophene Polymer
作者:Barry C. Thompson、Young-Gi Kim、John R. Reynolds
DOI:10.1021/ma0505934
日期:2005.6.1
QUINONE COMPOUNDS FOR USE IN PHOTOVOLTAIC APPLICATION
申请人:Decampo Floryan
公开号:US20130306917A1
公开(公告)日:2013-11-21
The invention relates to a photovoltaic coating containing a mixture of organic N-type (acceptor) and P-type (donor) semiconductor compounds, which makes it possible, when selecting the donor/acceptor pair, to modulate the semiconductor properties of the photovoltaic coating so as to enable the use thereof within a photovoltaic device, wherein one of the organic semiconductors includes a quinone core.
Soluble Narrow Band Gap and Blue Propylenedioxythiophene-Cyanovinylene Polymers as Multifunctional Materials for Photovoltaic and Electrochromic Applications
作者:Barry C. Thompson、Young-Gi Kim、Tracy D. McCarley、John R. Reynolds
DOI:10.1021/ja061274a
日期:2006.10.1
A family of soluble narrow band gap donor- acceptor conjugated polymers based on dioxythiophenes and cyanovinylenes is reported. The polymers were synthesized using Knoevenagel polycondensation or Yamamoto coupling polymerizations to yield polymers with molecular weights on the order of 10000-20000 g/mol, which possess solubility in common organic solvents. Thin film optical measurements revealed narrow band gaps of 1.5-1.8 eV, which gives the polymers a strong overlap of the solar spectrum. The energetic positions of the band edges were determined by cyclic voltammetry and differential pulse voltammetry and demonstrate that the polymers are both air stable and show a strong propensity for photoinduced charge transfer to fullerene acceptors. Such measurements also suggest that the polymers can be both p- and n-type doped, which is supported by spectroelectrochemical results. These polymers have been investigated as electron donors in photovoltaic devices in combination with PCBM ([6,6]-phenyl C-61-butyric acid methyl ester) as an electron acceptor based on the near ideal band structures designed into the polymers. Efficiencies as high as 0.2% (AM1.5) with short circuit current densities as high as 1.2-1.3 mA/cm(2) have been observed in polymer/PCBM (1: 4 by weight) devices and external quantum efficiencies of more than 10% have been observed at wavelengths longer than 600 nm. The electrochromic properties of the narrow band gap polymers are also of interest as the polymers show three accessible color states changing from an absorptive blue or purple in the neutral state to a transmissive sky-blue or gray in the oxidized and reduced forms. The wide electrochemical range of electrochromic activity coupled with the strong observed changes in transmissivity between oxidation states makes these materials potentially interesting for application to electrochromic displays.