GLYCOSYLTRANSFERASE REVERSIBILITY FOR SUGAR NUCLEOTIDE SYNTHESIS AND MICROSCALE SCANNING
申请人:Thorson Jon S.
公开号:US20130004979A1
公开(公告)日:2013-01-03
The present invention generally relates to materials and methods for exploiting glycosyltransferase reversibility for nucleotide diphosphate (NDP) sugar synthesis. The present invention provides engineered glycosyltransferase enzymes characterized by improved reaction reversibility and expanded sugar donor specificity as compared to corresponding non-mutated glycosyltransferase enzymes. Such reagents provide advantageous routes to NDP sugars for subsequent use in a variety of biomedical applications, including enzymatic and chemo-enzymatic glycorandomization.
An aromatic substituted glycoside is disclosed of the formula
wherein the configuration of the substituted -OR on the anomeric carbon is alpha, n is an integer of 0 or 1, and R is a substituted aromatic radical selected from the group
where R through R6 are independently halogen, NO2, S03H,
where R7 is lower alkyl; and includes its stereoisomers, optical isomers and geometric isomers and mixtures of the foregoing isomers. These substrates are useful as direct substrates for alpha-amylases. A process for the preparation of the substrates and related substances is also described.
A method of measuring an analyte, comprising a step of measuring a detectable substance by using a reaction system including a formation reaction of the detectable substance based on a chemical reaction of the analyte contained in a sample, wherein a layered inorganic compound is caused to exist in the reaction system including the formation reaction of the detectable substance, whereby high-sensitivity measurement is made possible, the detectable substance can be stabilized to improve accuracy of the measurement, a rate of a chemical reaction is increased to enable quick measurement, and high-sensitivity measurement is made possible even in a reaction system which forms an insoluble substance. Also, it can be provided an analytical testing piece for measuring an analyte, by measuring a detectable substance by using a reaction system including a formation reaction of the detectable substance based on a chemical reaction of the analyte contained in a sample, wherein the testing piece comprises at least one test portion having a detection portion for detecting the detectable substance and contains a layered inorganic compound at least in the test portion, whereby diffusion and elution of a dyestuff or the like is prevented, more sensitive and accurate simple analysis is made possible, and easy handling is possible.
A method of measuring an analyte, comprising a step of measuring a detectable substance by using a reaction system including a formation reaction of the detectable substance based on a chemical reaction of the analyte contained in a sample, wherein a layered inorganic compound is caused to exist in the reaction system including the formation reaction of the detectable substance, whereby high-sensitivity measurement is made possible, the detectable substance can be stabilized to improve accuracy of the measurement, a rate of a chemical reaction is increased to enable quick measurement, and high-sensitivity measurement is made possible even in a reaction system which forms an insoluble substance. Also, it can be provided an analytical testing piece for measuring an analyte, by measuring a detectable substance by using, a reaction system including a formation reaction of the detectable substance based on a chemical reaction of the analyte contained in a sample, wherein the testing piece comprises at least one test portion having a detection portion for detecting the detectable substance and contains a layered inorganic compound at least in the test portion, whereby diffusion and elution of a dyestuff or the like is prevented, more sensitive and accurate simple analysis is made possible, and easy handling is possible.
The degradation mechanism of a synthetic substrate, 2-chloro-4-nitrophenyl alpha-maltotrioside (CNP-G(3)), by human salivary alpha-amylase (HSA) was investigated by kinetic and product analyses. It was observed that the enzyme attacked the various CNP-maltooligosaccharides (CNP-G(3) to CNP-G(6)) releasing free CNP. Addition of 500 mM potassium thiocyanate (KSCN) was also found to greatly increase the rates of CNP-release. It was the fastest with CNP-G(3), and, in the presence of KSCN, was almost comparable to that of degradation of maltopentaose (G(5)). On the other hand, addition of KSCN decreased the rate of cleavage between glucan-glucan bonds in maltopentaose. Product analysis showed that KSCN addition altered the cleavage distribution which occurred 100% at the bond between CNP and G(3), and that product distribution of free CNP was largely dependent on substrate concentration. Formation of CNP-G,, a larger product than the original substrate CNP-G,, was found to be present in the digest at high concentrations of substrate and in the presence of KSCN. Based on these results, a degradation pathway for CNP-G(3) involving transglycosylation besides direct hydrolysis is proposed. The increase of the CNP-release by the addition of KSCN would result from a corresponding increase in the interaction between the CNP moiety and the corresponding subsite near the catalytic site, as well as the enhancement of the catalytic efficiency. (C) 1997 Elsevier Science Ltd.