Novel selective thiadiazine DYRK1A inhibitor lead scaffold with human pancreatic β-cell proliferation activity
摘要:
The Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A) is an enzyme that has been implicated as an important drug target in various therapeutic areas, including neurological disorders (Down syndrome, Alzheimer's disease), oncology, and diabetes (pancreatic beta-cell expansion). Current small molecule DYRK1A inhibitors are ATP-competitive inhibitors that bind to the kinase in an active conformation. As a result, these inhibitors are promiscuous, resulting in pharmacological side effects that limit their therapeutic applications. None are in clinical trials at this time. In order to identify a new DYRK1A inhibitor scaffold, we constructed a homology model of DYRK1A in an inactive, DFG-out conformation. Virtual screening of 2.2 million lead-like compounds from the ZINC database, followed by in vitro testing of selected 68 compounds revealed 8 hits representing 5 different chemical classes. We chose to focus on one of the hits from the computational screen, thiadiazine I which was found to inhibit DYRK1A with IC50 of 9.41 mu m (K-d = 7.3 mu M). Optimization of the hit compound 1, using structure-activity relationship (SAR) analysis and in vitro testing led to the identification of potent thiadiazine analogs with significantly improved binding as compared to the initial hit (K-d = 71-185 nM). Compound 3-5 induced human beta-cell proliferation at 5 mu M while showing selectivity for DYRK1A over DYRK1B and DYRK2 at 10 mu M. This newly developed DYRK1A inhibitor scaffold with unique kinase selectivity profiles has potential to be further optimized as novel therapeutics for diabetes. (C) 2018 Published by Elsevier Masson SAS.
[EN] LIPID CONJUGATE PREPARED FROM SCAFFOLD MOIETY<br/>[FR] CONJUGUÉ LIPIDIQUE PRÉPARÉ À PARTIR D'UN FRAGMENT SQUELETTE
申请人:INTEGRATED NANOTHERAPEUTICS INC
公开号:WO2020191477A1
公开(公告)日:2020-10-01
The application relates to a lipid conjugate of formula M-X1-L wherein M is a molecule of interest such as a drug moiety; X1 is a linker group such as ester, ether or carbamate; and L is a lipid scaffold represented by formula (lId): -L1-[L2(H)(X2R)]n-L3-[L4(H)(X2R)]p-L5-L6 and wherein L comprises 5 to 40 carbon atoms and 0 to 2 carbon-carbon double bonds. The lipid conjugate can be formulated in a drug delivery vehicle such as a lipid nanoparticle (LNP).
[EN] DIAMINO-PYRIMIDINES AND THEIR USE AS ANGIOGENESIS INHIBITORS<br/>[FR] DIAMINO-PYRIMIDINES ET LEURS UTILISATIONS EN TANT QU'INHIBITEURS DE L'ANGIOGENESE
申请人:SMITHKLINE BEECHAM CORP
公开号:WO2003074515A1
公开(公告)日:2003-09-12
Benzimidazole derivatives of formula (I) , which are useful as TIE-2 and/or VEGFR-2 inhibitors are described herein. The described invention also includes methods of making such benzimidazole derivatives as well as methods of using the same in the treatment of hyperproliferative diseases. (I)
Compounds, compositions and methods for modulating the activity of nuclear receptors are provided. In particular, heterocyclic compounds are provided for modulating the activity of farnesoid X receptor (FXR), liver X receptor (LXR) and/or orphan nuclear receptors. In certain embodiments, the compounds are thiazolidinone derivatives.
was successfully applied to the synthesis of 2-amino-4-methylenethiazolines. This route features an unprecedented fast reaction rate with full conversion reached within 10 min at room temperature for aromatic isothiocyanates and excellent chemoselectivity for exocyclic products. The application of this strategy is further highlighted by the accelerated bioconjugation of propargylamine with fluorescein
A concise approach for the preparation of 5-arylidene-2-imino-4-thiazolidinone derivatives is described. Structurally diverse amines, isothiocyanates, aldehydes, and chloroacetyl chloride were combined under microwaveirradiation to afford new 5-arylidene-2-imino-4-thiazolidinone derivatives. The one-pot synthesis involves the in situ formation of a thiourea followed by reaction with chloroacetyl chloride