Development of the First Ultra-Potent “Capsaicinoid” Agonist at Transient Receptor Potential Vanilloid Type 1 (TRPV1) Channels and Its Therapeutic Potential
Development of the First Ultra-Potent “Capsaicinoid” Agonist at Transient Receptor Potential Vanilloid Type 1 (TRPV1) Channels and Its Therapeutic Potential
Targeting Transient Receptor Potential Vanilloid 1 (TRPV1) Channel Softly: The Discovery of Passerini Adducts as a Topical Treatment for Inflammatory Skin Disorders
management of skin disorders related to inflammation and pruritus. Here we report the synthesis and the evaluation of capsaicin soft drugs that undergo deactivation by the hydrolyzing activity of skin esterases. The implanting of an ester group in the lipophilic moiety of capsaicinoids by the Passerini multicomponent reaction affords both agonists and antagonists that retain transient receptor potential vanilloid
[EN] TRPV1 AGONISTS, FORMULATIONS CONTAINING THEM AND USES THEREOF<br/>[FR] AGONISTES DE TRPV1, FORMULATIONS CONTENANT CES AGONISTES ET LEURS UTILISATIONS
申请人:INDENA SPA
公开号:WO2006010445A1
公开(公告)日:2006-02-02
The compounds of the general formula (I) in which X is represents two hydrogen atoms, a π-bond, oxygen or methylene; R2 is a C6-C12 aryl, or arylalkyl residue; R3 is hydrogen, 2-hydroxyethyl or 2-aminoethyl are useful for the treatment of pathologies mediated by vanilloid receptors type I.
Endocannabinoids (eCBs) are endogenous neuromodulators of synaptic transmission. Their dysfunction may cause debilitating disorders of diverse clinical manifestation. For example, drug addiction, lack of sex desire, eating disorders, such as anorexia or bulimia and dyssomnias. eCBs also participate in the regulation of core temperature and pain perception. In this context, it is important to recognize the utility of cannabinoid receptor 1 (CB1R) agonists, natural as Delta(9)-tetrahydrocannabinol (THC) or synthetic as Nabilone as useful drugs to alleviate this kind of patients' suffering. Therefore, we have developed a new drug, (R,Z)-18-((1S,4S)-5-methyl-2,5-diazabicyclo[2.2.1]heptan-2-yl)-18-oxooctadec-9-en-7-yl phenylacetate (PhAR-DBH-Me), that appears to bind and activate the CB1R. This diazabicyclic amide was synthesized from phenylacetylricinoleic acid and (1S, 4S)-2,5-diazabicyclo[ 2.2.1] heptane. To test its cannabinergic properties we evaluated its effects on core temperature, pain perception, and the sleep-waking cycle of rats. Results indicate that 20 and 40 mg/kg of PhAR-DBH-Me readily reduced core temperature and increased pain perception threshold. In addition, 20 mg/kg increased REM sleep in otherwise normal rats. All these effects were prevented or attenuated by AM251, a CB1R antagonist. Place preference conditioning studies indicated that this molecule does not produce rewarding effects. These results strongly support that PhAR-DBH-Me possesses cannabinoid activity without the reinforcement effects. (C) 2010 Elsevier Ltd. All rights reserved.