摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

硝酸甘油 | 55-63-0

中文名称
硝酸甘油
中文别名
永保心灵;三硝酸甘油;三硝酸甘油酯;硝化甘油
英文名称
glycerin trinitrate
英文别名
'Nitroglycerin';glyceryl trinitrate;GTN;Nitroglycerin;1,3-dinitrooxypropan-2-yl nitrate
硝酸甘油化学式
CAS
55-63-0
化学式
C3H5N3O9
mdl
MFCD00171649
分子量
227.087
InChiKey
SNIOPGDIGTZGOP-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 物理描述:
    Colorless to pale-yellow, viscous liquid or solid (below 56°F). [Note: An explosive ingredient in dynamite (20-40%) with ethylene glycol dinitrate (80-60%).]
  • 颜色/状态:
    VISCOUS LIQUID
  • 味道:
    Sweet, burning taste
  • 沸点:
    250.0 °C
  • 熔点:
    13.5 °C
  • 闪点:
    518 °F (NFPA, 2010)
  • 溶解度:
    Soluble in water (1800 mg/l at 25 °C)
  • 密度:
    1.5918 @ 25 °C/4 °C; 1.6009 @ 15 °C/4 °C
  • 蒸汽密度:
    7.8 (Air= 1)
  • 蒸汽压力:
    2.0X10-4 mm Hg @ 20 °C
  • 水溶性:
    -3
  • 稳定性/保质期:
    1. **稳定性**:稳定。 2. **禁配物**:强氧化剂、活性金属粉末、酸类。 3. **避免接触的条件**:暴冷暴热、撞击、摩擦、受热。 4. **聚合危害**:不聚合。 5. **分解产物**:氮氧化物。
  • 自燃温度:
    270 °C (518 °F)
  • 分解:
    Begins to decompose at 50-60 °C, appreciable volatile at 100 °C evolves nitrous yellow vapors at 135 °C.
  • 粘度:
    36.0 centipoise @ 20 °C
  • 燃烧热:
    1580 cal/g
  • 汽化热:
    13,753.1 gcal/gmole
  • 折光率:
    Index of refraction: 1.474 @ 15 °C/D
  • 保留指数:
    1356;1387

计算性质

  • 辛醇/水分配系数(LogP):
    1.6
  • 重原子数:
    15
  • 可旋转键数:
    5
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    165
  • 氢给体数:
    0
  • 氢受体数:
    9

ADMET

代谢
线粒体乙醛脱氢酶2(ALDH2)促进硝化甘油的生物活化。硝化甘油被代谢为亚硝酸盐;1,2-甘油二硝酸盐;和1,3-甘油二硝酸盐。亚硝酸盐进一步代谢为一氧化氮。1,2-和1,3-甘油二硝酸盐的生物活性低于硝化甘油,但它们的半衰期更长,这解释了硝酸酯的一些持久效果。两种二硝酸盐最终被代谢为甘油、二氧化碳和单硝酸盐,后者不具有血管舒张作用。硝化甘油还可以与硫醇发生化学反应,生成中间体S-亚硝基硫醇,进而产生更多的一氧化氮。
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) promotes the bioactivation of nitroglycerin. Nitroglycerin is metabolized to nitrite; 1,2-glyceryl dinitrate; and 1,3 glyceryl dinitrate. Nitrite is further metabolized to nitric oxide. 1,2- and 1,3-dinitroglycerols are less biologically active than nitroglycerin but they have longer half-lives, which explains some prolonged effects of nitrates. Both dinitrates are finally metabolized to glycerol, carbon dioxide, and mononitrates that do not have vasodilatory actions. Nitroglycerin can also chemically react with a thiol to generate an intermediate S-nitrosothiol, which resulted in further production of nitric oxide.
来源:DrugBank
代谢
甘露醇单硝酸酯是硝酸甘油的主要循环代谢物。
... Glyceryl ... /mononitrate is/ major circulating ... /metabolite/ of nitroglycerin.
来源:Hazardous Substances Data Bank (HSDB)
代谢
硝酸甘油的代谢...似乎涉及还原型谷胱甘肽,这一反应由一种称为有机硝酸盐还原酶的酶催化,该酶主要位于肝脏匀浆的可溶性部分。
The metabolism of nitroglycerin... appears to involve reduced glutathione in a reaction catalyzed by an enzyme known as organic nitrate reductase, which is predominantly located in the soluble fraction of liver homogenate.
来源:Hazardous Substances Data Bank (HSDB)
代谢
硝酸甘油在肝脏通过还原性水解降解,部分在血浆中通过自发性水解...主要的尿液代谢物包括甘油单硝酸盐、1,2-甘油二硝酸盐和1,3-甘油二硝酸盐...肝脏中的活性水解由肝无机硝酸盐还原酶催化,导致自由一氧化氮自由基的形成。
Nitroglycerin is degraded in the liver by reductive hydrolysis and partially in plasma by spontaneous hydrolysis... The major urinary metabolites include glyceryl mononitrate, 1,2-glyceryl dinitrate and 1,3-glyceryl dinitrate... Reactive hydrolysis in the liver by hepatic inorganic nitrate reductase leads to the formation of the free nitric oxide radical.
来源:Hazardous Substances Data Bank (HSDB)
代谢
无机硝酸盐与还原型谷胱甘肽相互作用发生初步水解还原,这种反应既可以自发进行,也可以在从肝脏可溶性部分提取的酶的参与下发生。
Initial hydrolytic reduction by interaction of inorganic nitrate with reduced glutathione occurs both spontaneously and with enzymes, which can be extracted fron the soluble fraction of the liver.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
甘油三硝酸酯被用作抗心绞痛的血管扩张剂。它是一种略有挥发性的无色油性液体,具有甜味、芳香和辛辣的味道。溶于水、乙醇、甲醇,并与醚、丙酮和氯仿混溶。适应症:心绞痛和左心室衰竭的预防和治疗。控制心脏手术期间的高血压。对常规治疗无反应的充血性心力衰竭。人类暴露:主要风险和靶器官:甘油三硝酸酯的有毒效果是由血管扩张和高铁血红蛋白血症引起的。静脉和动脉血管扩张导致血压降低,导致休克。心脏、血管和红细胞是甘油三硝酸酯中毒的靶器官。临床效果概述:暴露后几分钟到一小时或更长时间内可能出现中毒特征。心动过速和低血压之后是心动过缓和衰竭。面部潮红、头痛、头晕、不安、晕厥、惊厥和昏迷可能出现。其他一些特征包括呕吐、腹泻、发绀和高铁血红蛋白血症及呼吸衰竭。酒精会增强甘油三硝酸酯的效果。甘油三硝酸酯使用的禁忌症包括低血压、头部受伤、严重贫血、脑出血以及在闭角青光眼倾向的患者中。静脉注射在缩窄性心包炎和未纠正的低血容量情况下是禁忌的。进入途径:口服:可以通过摄入引起有毒效果。吸入:吸入灰尘可能引起有毒效果。皮肤:当通过皮肤吸收时可能发生有毒效果。长时间的皮肤接触会导致皮肤疹。parenteral:过量静脉注射给药时会引起有毒效果。暴露途径的吸收:口服:甘油三硝酸酯很容易从口腔黏膜吸收,但迅速代谢,因此其作用时间短暂。它也容易从胃肠道吸收,但由于肝脏的广泛首次通过代谢,其生物利用度降低。一项涉及5名健康人的研究表明,口服甘油三硝酸酯胶囊和口服溶液后,生物利用度低于1%。然而,口服甘油三硝酸酯给药后,活性较弱的二硝基代谢物达到相对较高的浓度,有人认为这些代谢物可能是口服甘油三硝酸酯活性的原因。皮肤:甘油三硝酸酯也可以从软膏基中通过皮肤吸收。暴露途径的分布:达到峰值浓度的时间取决于给药途径;舌下、口服和皮肤给药后分别在2分钟、40分钟和1小时出现。舌下给药的生物利用度为38%,口服给药为1%。暴露途径的生物半衰期:这种药物具有非常短的血浆半衰期。硝酸甘油的消除半衰期为1.7至2.9分钟。当甘油三硝酸酯舌下给药时,峰值血浆浓度在4分钟内出现,至少有一半的完整甘油三硝酸酯在1到3分钟内从血液中清除。皮肤应用45毫克硝酸甘油软膏后,峰值血浆浓度在大约1小时出现。代谢:甘油三硝酸酯通过水解代谢为二硝基化合物和单硝基化合物。二硝基代谢物的半衰期约为40分钟,大约是甘油三硝酸酯的20倍。暴露途径的消除:在10名健康志愿者舌下给予甘油三硝酸酯560微克后,约22%的给药剂量在24小时后主要以单硝基化合物形式从尿液中排出。作用机制毒动力学:甘油三硝酸酯几乎对所有血管床的血管平滑肌具有扩张作用。治疗剂量下的有益效果以及过量的效果可归因于全身静脉和动脉血管扩张的生理后果。心脏前负荷、系统血压和系统血管阻力均呈进行性下降。可能出现低血压和循环衰竭及休克的状态。患者在过量或治疗后可能会出现高铁血红蛋白血症。药效动力学:甘油三硝酸酯放松平滑肌,包括血管平滑肌,并降低收缩压。人们认为,主要通过外周血管扩张减少心肌耗氧量,从而减少静脉回流,降低左心室容积和能量消耗,来实现抗心绞痛效果。甘油三硝酸酯放松冠状动脉的效果并不显著增加冠状动脉血流量。相互作用:酒精增强甘油三硝酸酯的效果。当舌下含服硝酸甘油片与β-肾上腺素受体阻断剂合用时,可能会出现过度头晕和眩晕感。在静脉输注利多卡因的患者中使用舌下硝酸甘油片后,已经报告了完全房室传导阻滞。甚至可能出现心脏停搏。异丙吡胺(通过产生口干)可能阻止舌下硝酸异山梨酯片的溶解。在使用三环类抗抑郁药时也可能发生这种情况。已经报告了在使用丙米嗪的患者和接受阿托品治疗的另一名患者中,甘油三硝酸酯片的溶解延迟。一名患者在接受甘油三硝酸酯静脉给药后两次出现对肝素效果的抵抗。由于在不含丙二醇的甘油三硝酸酯制剂给药期间也出现耐药性,因此这种相互作用不能归因于溶剂中的丙二醇。在患者使用经皮贴剂进行电除颤时观察到爆炸性冲洗。主要不良效果:硝酸盐的毒性不受化学
IDENTIFICATION: Glyceryl trinitrate is used as an anti-anginal vasodilating agent. It slightly volatile odorless oily liquid with sweet, aromatic and pungent taste. Soluble in water, ethanol, methanol and miscible with ether, acetone and chloroform. Indications: Prophylaxis and treatment of angina and left ventricular failure. Control of hypertension during cardiac surgery. Congestive cardiac failure unresponsive to usual therapy. HUMAN EXPOSURE: Main risks and target organs: Toxic effects of glyceryl trinitrate are caused by vasodilatation and methemoglobinemia. Venous and arterial vasodilatation causes lowering of blood pressure leading to shock. Heart, blood vessels and red blood cells are the target organs in glyceryl trinitrate poisoning. Summary of clinical effects: Features of poisoning may appear within a few minutes to one hour or more after exposure. There is tachycardia and hypotension followed by bradycardia and collapse. Flushing of the face, headache, dizziness, restlessness, syncope, convulsions and coma may be present. Some of the other features are vomiting, diarrhoea, cyanosis and methaemoglobinaemia and respiratory failure. Effects of glyceryl trinitrate are enhanced by alcohol. Contraindications to the use of glyceryl trinitrate is in patients with hypo, head injury, severe anemia, cerebral hemorrhage and in patients predisposed to closed-angle glaucoma. Intravenous administration contraindicated in constrictive pericarditis and uncorrected hypovolaemia. Routes of entry: Oral: Toxic effects can occur by ingestion. Inhalation: Inhalation of dust may cause toxic effects. Dermal: Toxic effects may occur when absorbed through skin. Prolonged skin contact can cause skin eruptions. Parenteral: Toxic effects can occur by the administration of excessive intravenous doses. Absorption by route of exposure: Oral: Glyceryl trinitrate is readily absorbed from the oral mucosa but rapidly metabolized so that it has only a fleeting duration of action. It is also readily absorbed from the gastrointestinal tract, but owing to extensive first-pass metabolism in the liver its bioavailability is reduced. A study involving 5 healthy persons indicated a bioavailability of less than 1% following administration by mouth of glyceryl trinitrate capsule and oral solution. However the weakly pharmacologically active dinitrate metabolites reached relatively high concentrations after oral glyceryl trinitrate administration and it was suggested that these metabolites may be responsible for the activity of oral glyceryl trinitrate. Dermal: Glyceryl trinitrate is also absorbed through the skin from an ointment base. Distribution by route of exposure: The time to peak concentration depends on the route of administration; it occurs after 2 minutes, 40 minutes and one hour after sublingual, oral and dermal administration respectively. Bioavailability is 38% after sublingual and 1% for oral administration. Biological half-life by route of exposure: This drug has a very short plasma half life. Elimination half-life of nitroglycerin is 1.7 to 2.9 minutes. When glyceryl trinitrate was given sublingually peak plasma concentrations appeared within 4 minutes and at least half of the intact glyceryl trinitrate was cleared from the blood in 1 to 3 minutes. Peak plasma concentration following dermal application of 45 mg nitroglycerin ointment occurred in about 1 hour. Metabolism: Glyceryl trinitrate is metabolized by hydrolysis to dinitrates and the mononitrate. The half-life for dinitrate metabolites is about 40 minutes approximately 20 times that of glyceryl trinitrate. Elimination by route of exposure: In 10 healthy volunteers given glyceryl trinitrate 560 ug sublingually, about 22% of the administered dose was excreted in the urine after 24 hours mainly as the mononitrate. Mode of action Toxicodynamics: Glyceryl trinitrate has dilator properties on vascular smooth muscle in virtually all vascular beds. The beneficial effects in therapeutic doses and the effects seen with overdose are attributable to the physiologic consequences of systemic venous and arteriolar vasodilatation. The cardiac preload, systemic blood pressure and systemic vascular resistance all show a progressive decrease. A state of hypotension and circulatory collapse and shock may result. methemoglobinemia may occur in patients following an overdose or after therapy. Pharmacodynamics: Glyceryl trinitrate relaxes smooth muscle including vascular smooth muscle, and reduces systolic blood pressure. It is thought that the anti-anginal effect mainly depends on reducing myocardial oxygen demand by means of peripheral vasodilatation which causes decreased venous return permitting a reduction in left ventricular volume and energy expenditure. The effect of glyceryl trinitrate in relaxing coronary vessels is not considered to increase appreciably coronary blood flow. Interactions: Alcohol enhances the effects of glyceryl trinitrate. Undue dizziness and faint feeling may occur when sublingual nitrates are taken with beta-adrenoceptor blocking drugs. Complete AV block has been reported after use of sublingual nitrates in patients receiving lignocaine by infusion. Even cardiac asystole may occur. Disopyramide (by producing dryness in mouth) may prevent dissolution of sublingual isosorbide dinitrate tablets. This may also occur with tricyclic antidepressants. Delayed dissolution of glyceryl trinitrate tablets in patients with dry mouths has been reported in a patient taking imipramine and in another patient treated with atropine. A patient developed resistance to the effects of heparin on two occasions directly after intravenous administration of glyceryl trinitrate. The interactions could not be attributed to propylene glycol in the solvent since resistance also occurred during administration of a formulation of glyceryl trinitrate without propylene glycol. Explosion flush has been observed in patients with transdermal patch when electric defibrillation was performed. Main adverse effects: The toxicity of the nitrates is unaffected by the chemical form or by the route of administration and all the nitrates have a common profile of adverse effects. Hypotension, reflex tachycardia and palpitations may occur. Postural hypotension and syncope is seen, especially in elderly patients. Rarely severe bradycardia has been reported. Throbbing headache is quite common. This symptoms is likely to recede as tolerance develops. Peripheral edema is also frequently seen. Transient hypoxemia with precipitation of angina is seen occasionally. Transient cerebral ischemic episodes unrelated to changes in blood pressure are rarely seen. In patients with cerebrovascular disease, it is recommended to initiate treatment with small doses. Although tolerance has long been associated with nitrates, its clinical implications are not clear. Tolerance is best defined as a decreasing pharmacological effect over time, often with a need for an increasing dose to achieve a given action. Tolerance may be partial or incomplete and may occur to one aspect of nitrate therapy and not to others. Disappearance of the throbbing headache is useful. However, due to an attenuation of the antihypertensive effect, these agents are not useful in the long term management of hypertension. The part played by the arterial and venous side of the circulation pertaining to the development of tolerance is not clear. By having a long (approximately 8 hours) nitrate free interval, the development of tolerance may be avoided or reduced. Decreasing the number of daily doses of glyceryl trinitrate also helps to achieve this effect. Sustained release preparations are more likely to produce tolerance than the short acting preparations.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 药物性肝损伤
硝酸甘油
Compound:nitroglycerin
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
毒理性
  • 药物性肝损伤
DILI 注解:无 DILI 关注
DILI Annotation:No-DILI-Concern
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
毒理性
  • 药物性肝损伤
标签部分:没有匹配项
Label Section:No match
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
毒理性
  • 药物性肝损伤
参考文献:M Chen, V Vijay, Q Shi, Z Liu, H Fang, W Tong. 美国食品药品监督管理局批准的药物标签用于研究药物诱导的肝损伤,《药物发现今日》,16(15-16):697-703, 2011. PMID:21624500 DOI:10.1016/j.drudis.2011.05.007 M Chen, A Suzuki, S Thakkar, K Yu, C Hu, W Tong. DILIrank:根据药物在人体内导致肝损伤风险排名的最大参考药物清单。《药物发现今日》2016, 21(4): 648-653. PMID:26948801 DOI:10.1016/j.drudis.2016.02.015
References:M Chen, V Vijay, Q Shi, Z Liu, H Fang, W Tong. FDA-Approved Drug Labeling for the Study of Drug-Induced Liver Injury, Drug Discovery Today, 16(15-16):697-703, 2011. PMID:21624500 DOI:10.1016/j.drudis.2011.05.007 M Chen, A Suzuki, S Thakkar, K Yu, C Hu, W Tong. DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans. Drug Discov Today 2016, 21(4): 648-653. PMID:26948801 DOI:10.1016/j.drudis.2016.02.015
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
吸收、分配和排泄
  • 吸收
硝酸甘油迅速被吸收,因此经常用于急救情况。在患有缺血性心脏病的患者中,给予0.5毫克硝酸甘油的舌下剂量后,峰浓度(Cmax)为2.56纳克/毫升,平均Tmax为4.4分钟。0.6毫克舌下硝酸甘油剂量后的Cmax为2.1纳克/毫升,Tmax为7.2分钟。舌下给药的绝对生物利用度约为40%。硝酸甘油的生物利用度取决于多个因素,如粘膜代谢和水分状态,这些都影响舌下药物的吸收。
Nitroglycerin is rapidly absorbed and is often used in emergency situations for this reason. After a sublingual dose of 0.5 mg of nitroglycerin in patients with ischemic heart disease, the peak concentration (Cmax) was 2.56 ng/mL and the mean Tmax was 4.4 minutes. The Cmax following a 0.6mg dose of sublingual nitroglycerin was 2.1 ng/mL and the Tmax was 7.2 minutes. The absolute bioavailability following sublingual administration was about 40%. The bioavailability of nitroglycerin depends on several factors, such as mucosal metabolism and hydration status, which both affect the absorption of sublingual drugs.
来源:DrugBank
吸收、分配和排泄
  • 消除途径
Metabolism is the main route by which nitroglycerin is eliminated from the body. 代谢是将硝酸甘油从体内排出的主要途径。
Metabolism is the main route by which nitroglycerin is eliminated from the body.
来源:DrugBank
吸收、分配和排泄
  • 分布容积
硝酸甘油的分布容积为3升/千克。
The volume of distribution of nitroglycerin is 3 L/kg.
来源:DrugBank
吸收、分配和排泄
  • 清除
静脉给药后的估计清除率为1 L/kg/min。在一项针对缺血性心脏病和心绞痛患者的药代动力学研究中,舌下给药的表观清除率为21.9 L/min。
The estimated clearance following intravenous administration is 1 L/kg/min. The apparent clearance after a sublingual dose was 21.9 L/min in a pharmacokinetic study of patients with ischemic heart disease and angina.
来源:DrugBank
吸收、分配和排泄
在人类中,舌下给药后4分钟内,血桨中即可达到硝化甘油的峰值浓度。
In human beings, peak concentrations of nitroglycerin are found in plasma within 4 min of sublingual administration.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 危险等级:
    1.1D (Desensitized)
  • 危险品标志:
    T+,E,N
  • 安全说明:
    S16,S33,S35,S36/37,S45,S61,S7
  • 危险类别码:
    R11
  • 包装等级:
    I
  • 危险类别:
    1.1A
  • WGK Germany:
    2
  • 危险品运输编号:
    1993
  • 储存条件:
    储存注意事项: - 储存在阴凉、干燥且通风良好的专用库房中。 - 远离火源和热源,库温不超过32℃,相对湿度不超过80%。 - 保持容器密封。 - 应与氧化剂、活性金属粉末、酸类及食用化学品分开存放,切忌混合储存。 - 使用防爆型照明和通风设施,并禁止使用易产生火花的机械设备和工具。 - 储存区应配备泄漏应急处理设备和合适的收容材料。 - 禁止震动、撞击和摩擦。

SDS

SDS:e6386ad4e1d0f74d5eda3e900d03c373
查看
第一部分:化学品名称

制备方法与用途

制备方法

在20℃以下条件下,甘油与混酸进行酯化反应,经过洗涤步骤得到纯品。通常产品为乙醇的10%或1%溶液。

合成制备方法

同样地,在20℃以下条件下,甘油与混酸进行酯化反应,经洗涤后获得纯品。通常产品为乙醇的10%或1%溶液。

用途简介

该物质主要用于制造军事和商业用炸药,并作为防治心绞痛的药物。

用途

它被用于制造军事和商业用炸药,并作为防治心绞痛的药物。[27]

上下游信息

反应信息

  • 作为反应物:
    描述:
    硝酸甘油 作用下, 生成 甘油1,3-二硝酸酯
    参考文献:
    名称:
    Study of nitration equilibrium in the glycerin-aqueous nitric acid system. 1. Dependence of the equilibrium constants of nitration reactions on the temperature, acidity of the medium, and structure of the nitrated compound
    摘要:
    The equilibrium constants of seven sequential-parallel reactions of conversion of glycerin into glycerin trinitrate in aqueous HNO3 were measured. The effect of the acidity of the medium on the equilibrium nitration constants is correlated with processes of protonation of glycerin and its nitrates. The equilibrium nitration constants are higher for primary hydroxides than for secondary hydroxides, and they decrease in both series in going from glycerin to its dinitrates.
    DOI:
    10.1007/bf00961477
  • 作为产物:
    描述:
    参考文献:
    名称:
    Study of nitration equilibrium in the glycerin-aqueous nitric acid system. 1. Dependence of the equilibrium constants of nitration reactions on the temperature, acidity of the medium, and structure of the nitrated compound
    摘要:
    The equilibrium constants of seven sequential-parallel reactions of conversion of glycerin into glycerin trinitrate in aqueous HNO3 were measured. The effect of the acidity of the medium on the equilibrium nitration constants is correlated with processes of protonation of glycerin and its nitrates. The equilibrium nitration constants are higher for primary hydroxides than for secondary hydroxides, and they decrease in both series in going from glycerin to its dinitrates.
    DOI:
    10.1007/bf00961477
  • 作为试剂:
    描述:
    三苯基膦硝酸甘油 作用下, 以 二氯甲烷 为溶剂, 生成 三苯基氧化膦
    参考文献:
    名称:
    钼酶模型催化NO生成。
    摘要:
    [反应-见正文]一氧化氮(NO)是重要的生物信使分子。硝酸盐,包括硝酸甘油(GTN),是临床上重要的血管扩张药,据信在体内可生物转化为NO,即3e(-)还原。氢钼-(3,5-二甲基-1-吡唑基)硼酸钼络合物(MoTPB)被证明是GTN降解的有效催化剂,其中三苯基膦(Ph(3)P)作为还原性辅因子,产生大量的NO。MoTPB / Ph(3)P是一个出色的酶模型系统,显示了由钼酶介导的硝酸盐生物转化的可行性。
    DOI:
    10.1021/ol0165701
点击查看最新优质反应信息

文献信息

  • Preparation of Di- and polynitrates by ring-opening nitration of epoxides by dinitrogen pentoxide (N2O5)
    作者:Peter Golding、Ross W Millar、Norman C Paul、David H Richards
    DOI:10.1016/s0040-4020(01)87978-3
    日期:1993.8
    hydrocarbon solvents (principally CH2Cl2) to give vicinal nitrate ester products by a novel ring-opening nitration reaction. The procedure offers easier temperature control and simpler isolation procedures compared with conventional mixed acid nitrations; it also enables selective nitration reactions to be carried out on polyfunctional substrates. The scope and limitations of the reaction, as well as
    通过新颖的开环硝化反应,使十八种各种环氧化合物与N 2 O 5在氯化烃溶剂(主要为CH 2 Cl 2)中反应,得到邻位硝酸酯产物。与传统的混合酸硝化方法相比,该方法提供了更轻松的温度控制和更简单的分离步骤。它还可以在多官能底物上进行选择性硝化反应。讨论了反应的范围和局限性,以及利用N 2 O 4与硝酸亚硝酸酯原位进行原位氧化的替代方法的范围和局限性。
  • METHODS OF PRODUCING NITRATE ESTERS
    申请人:Straessler Nicholas A.
    公开号:US20120130115A1
    公开(公告)日:2012-05-24
    Methods of forming a nitrate ester include combining at least one nitrate salt and sulfuric acid to form a nitrating solution and adding an aliphatic polyol to the nitrating solution. Nitrate esters formed by this method may be, for example, triethylene glycol dinitrate (TEGDN), pentaerythritol tetranitrate (PETN), diglycerol tetranitrate (DGTN), 1,1,1-tris(methylol)ethane trinitrate (TMETN), 1,2,4-butanetriol trinitrate (BTTN), nitroglycerin (NG), diethylene glycol dinitrate (DEGDN), ethylene glycol dinitrate (EGDN), metriol trinitrate (MTN), nitrocellulose (NC), or 1,2-propanediol dinitrate (PDDN).
    形成硝酸酯的方法包括将至少一种硝酸盐和硫酸结合以形成硝化溶液,并向硝化溶液中添加脂肪族多元醇。通过这种方法形成的硝酸酯可能是三乙二醇二硝酸酯(TEGDN)、四硝基对甲苯酚(PETN)、二甘油四硝酸酯(DGTN)、1,1,1-三(甲醇)乙烷三硝酸酯(TMETN)、1,2,4-丁二醇三硝酸酯(BTTN)、硝化甘油(NG)、二乙二醇二硝酸酯(DEGDN)、乙二醇二硝酸酯(EGDN)、三羟甲基丙烷三硝酸酯(MTN)、硝化纤维素(NC)或1,2-丙二醇二硝酸酯(PDDN)。
  • Synthesis of nitric acid esters from alcohols in a dinitrogen pentoxide/carbon dioxide liquid system
    作者:Ilya V. Kuchurov、Igor V. Fomenkov、Sergei G. Zlotin、Vladimir A. Tartakovsky
    DOI:10.1016/j.mencom.2012.03.004
    日期:2012.3
    Organic nitric acid esters have been prepared in 89–98% yield by the nitration of the corresponding alcohols and polyols with N2O5 in liquid CO2.
    通过将相应的醇和多元醇与液态二氧化碳中的N2O5硝化,可以制备有机硝酸酯,产率为89-98%。
  • The Synthesis and Application of Novel Nitrating and Nitrosating Agents
    作者:Gholam H. Hakimalahi、Hashem Sharghi、Hamide Zarrinmayeh、Ali Khalafi-Nezhad
    DOI:10.1002/hlca.19840670332
    日期:1984.5.2
    Alcohols and phenols are efficiently nitrated with thionyl chloride nitrate or thionyl nitrate, even in the presence of an aromatic moiety. While thionyl chloride nitrate is suitable for nitration of primary OH-groups in carbohydrates, thionyl nitrate is reactive enough to react with secondary OH-groups as well. These reagents permit the highly selective nitration of the 5′-,2′5′- and 3′, 5′-OH-groups
    即使在存在芳族部分的情况下,醇和苯酚也可以被硝酸亚硫酰氯或硝酸亚硫酰有效地硝化。硝酸亚硫酰氯适用于碳水化合物中伯羟基的硝化,而硝酸亚硫酰具有足够的反应性,可以与仲羟基反应。这些试剂允许核糖核苷的5'-,2'5'-和3',5'-OH-基团的高选择性硝化,以高产率产生单保护或双保护的硝基衍生物。碳酸和某些酮的烯醇形式可以用三氟甲磺酰硝酸盐/叔丁醇钾有效地硝化。Lutidine N -oxide(2,6-(CH 3)2 C 5 H 3发现NO)对硝化反应具有显着影响。类似地,亚硫酰氯亚硝酸盐和亚硫酰亚硝酸盐显示出优异的上述底物的亚硝化能力。
  • Practical catalytic nitration directly with commercial nitric acid for the preparation of aliphatic nitroesters
    作者:Jichao An、Peipei Liu、Mengyuan Si、Wenhao Li、Pan He、Bo Yang、Guanyu Yang
    DOI:10.1039/d0ob01519a
    日期:——
    To pursue a sustainable and efficient approach for aliphatic nitroester preparation from alcohol, europium-triflate-catalyzed nitration, which directly uses commercial nitric acid, has been successfully developed. Gram scalability with operational ease showed its practicability.
    为了寻求一种可持续且高效的酒精制备脂肪族硝基酯的方法,已经成功开发了直接使用商业硝酸的三氟甲磺酸铕催化硝化反应。Gram 可扩展性和操作简便性显示了它的实用性。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
查看更多图谱数据,请前往“摩熵化学”平台
mass
查看更多图谱数据,请前往“摩熵化学”平台
查看更多图谱数据,请前往“摩熵化学”平台
查看更多图谱数据,请前往“摩熵化学”平台
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台