Novel Potential Anticancer Naphthyl Phosphoramidates of BVdU: Separation of Diastereoisomers and Assignment of the Absolute Configuration of the Phosphorus Center
摘要:
We have previously reported our SAR optimization of the anticancer agent thymectacin. Tuning of the parent ProTide structure initially involved the amino acid and, subsequently, the aromatic masking group on the phosphate moiety. Herein, derivatives bearing the combined modifications are reported and biological evaluation is described. Moreover, separation of the diastereoisomeric final product mixture shows a different cytostatic activity for the two diastereoisomers. Through computational and NMR studies, the absolute stereochemistry of the phosphorus center of the two diastereoisomers has been suggested.
Novel Potential Anticancer Naphthyl Phosphoramidates of BVdU: Separation of Diastereoisomers and Assignment of the Absolute Configuration of the Phosphorus Center
摘要:
We have previously reported our SAR optimization of the anticancer agent thymectacin. Tuning of the parent ProTide structure initially involved the amino acid and, subsequently, the aromatic masking group on the phosphate moiety. Herein, derivatives bearing the combined modifications are reported and biological evaluation is described. Moreover, separation of the diastereoisomeric final product mixture shows a different cytostatic activity for the two diastereoisomers. Through computational and NMR studies, the absolute stereochemistry of the phosphorus center of the two diastereoisomers has been suggested.
Phosphoramidate Derivatives of Guanosine Nucleoside Compunds for Treatment of Viral Infections
申请人:Chamberlain Stanley
公开号:US20120052046A1
公开(公告)日:2012-03-01
Phosphoramidate compounds derived from guanine bases having enhanced therapeutic potency are provided, and these compounds in particular have enhanced potency with respect to treatment of viral infections, such as hepatitis C virus. Pharmaceutical compositions, methods of preparing the compounds, and methods of using the compounds and compositions to treat viral infections are also provided.
We report in this Letter the synthesis of prodrugs of 2-fluoro-2-deoxyarabinose-1-phosphate and 2,2-difluoro-2-deoxyribose-1-phosphate. We demonstrate the difficulty of realising a phosphorylation step on the anomeric position of 2-deoxyribose, and we discover that introduction of fluorine atoms on the 2 position of 2-deoxyribose enables the phosphorylation step: in fact, the stability of the prodrugs increases with the degree of 2-fluorination. Stability studies of produgs of 2-fluoro-2-deoxyribose-1-phosphate and 2,2-difluoro-2-deoxyribose-1-phosphate in acidic and neutral conditions were conducted to confirm our observation. Biological evaluation of prodrugs of 2,2-difluoro-2-deoxyribose-1-phosphate for antiviral and cytotoxic activity is reported. (C) 2013 Published by Elsevier Ltd.
The Application of Phosphoramidate Protide Technology to Acyclovir Confers Anti-HIV Inhibition
Recently, it has been reported that phosphorylated acyclovir (ACV) inhibits human immunodeficiency virus type 1 (HIV-1) reverse transcriptase in a cell-free system. To deliver phosphorylated ACV inside cells, we designed ACV monophosphorylated derivatives using ProTide technology. We found that the L-alanine derived ProTides show anti-HIV activity at noncytotoxic concentrations; ester and aryl variation was tolerated, ACV ProTides with other amino acids, other than L-phenylalanine, showed no detectable activity against HIV in cell culture. The inhibitory activity of the prodrugs against herpes simplex virus (HSV) types-1 and -2 and thymidine kinase-deficient HSV-1 revealed different structure-activity relationships but was again consistent with successful nucleoside kinase bypass. Enzymatic and molecular modeling studies have been performed in order to better understand the antiviral behavior of these compounds. ProTides showing diminished carboxypeptidase lability translated to poor anti-HIV agents and vice versa, so the assay became predictive.
PHOSPHORAMIDATE DERIVATIVES OF GUANOSINE NUCLEOSIDE COMPOUNDS FOR TREATMENT OF VIRAL INFECTIONS