我们报告了 [Pd(cinnamyl)Cl]2/Mor-DalPhos 催化剂体系在(杂)芳基氯化物与伯胺或仲胺的 Buchwald-Hartwig 胺化中的应用,该胺化反应在水性条件下进行,不使用共溶剂和/或表面活性剂或在无溶剂条件下(52 个例子)。We have established that reactions of this type can be conducted without the rigorous exclusion of air, and in the case of the solvent-free reactions, we have demonstrated that appropriately selected liquid and solid reagents can be employed successfully.
readily available N-(2-pyridyl)anilines and commercially available α-Cl ketones through iridium-catalyzed C–H activation and cyclization is reported here. As a complementary approach to the conventional strategies for indole synthesis, the transformation exhibits powerful reactivity, tolerates a large number of functional groups, and proceeds with good to excellent yields undermildconditions, providing
A cascade iridium-catalysed oxindolesynthesis was achieved using pyridyl-protected anilines and bis(2,2,2-trifluoroethyl) 2-diazomalonate. The developed protocol is simple and scalable, and has a broad scope and excellent regioselectivity. The pyridyl directing group can easily be removed. The method was further extended to give C-7-functionalized oxindole derivatives in a straightforward manner.
Palladium/Silver Synergistic Catalysis in Direct Aerobic Carbonylation of C(sp<sup>2</sup>)<i>−</i>H Bonds Using DMF as a Carbon Source: Synthesis of Pyrido-Fused Quinazolinones and Phenanthridinones
作者:D. Nageswar Rao、Sk. Rasheed、Parthasarathi Das
DOI:10.1021/acs.orglett.6b01292
日期:2016.7.1
An unprecedented Pd/Ag synergistic catalysis in the direct carbonylation of C(sp2)–H bonds utilizing DMF as the carbon source under oxygen is described and demonstrated in the synthesis of pyrido-fused quinazolinone and phenanthridinone scaffolds. Control experiments indicated that the “C” of the carbonyl group is derived from the methyl group of DMF and “O” originates from oxygen as in the case of
intermediacy of an Ir-boryl complex where the substrate C–Hactivation is the turnover determining step, intriguingly without any appreciable primary KIE. The method displays a broad range of substrate scope and functional group tolerance. Numerous late-stage borylation of various important molecules and drugs were achieved using this developed strategy. The borylated compounds were further converted into
一种 Ir 催化的芳烃(例如 2-苯氧基吡啶、2-苯胺基吡啶、苄胺、苄基哌嗪、苄基吗啉、苄基吡咯烷、苄基哌啶、苄基氮杂环己烷、α-氨基酸衍生物、氨基苯基乙烷衍生物和其他重要支架)的无配体邻位硼化的有效方法) 并开发了药物。正如通过使用动力学同位素研究和 DFT 计算进行的详细机理研究所揭示的那样,该反应通过一个有趣的机理途径进行。发现催化循环涉及 Ir-硼基络合物的中间体,其中底物 C-H 活化是转换决定步骤,有趣的是没有任何明显的初级 KIE。该方法显示了广泛的底物范围和官能团耐受性。使用这种开发的策略实现了各种重要分子和药物的许多后期硼化。硼化化合物进一步转化为更有价值的官能团。此外,利用单硼化化合物的 B-N 分子内相互作用的优势,开发了一种操作简单的方法,用于选择性二硼化 2-苯氧基吡啶和许多官能化芳烃。此外,还展示了从硼化产物中去除吡啶基导向基团以实现邻硼化苯酚以及用于制备 1,2-二硼化苯的
Ruthenium-catalyzed synthesis of indole derivatives from <i>N</i>-aryl-2-aminopyridines and alpha-carbonyl sulfoxonium ylides
Indole is a ubiquitous structural motif with important applications in many areas of chemistry. Given this, a simple and efficient Ru(II)-catalyzed synthesis of indole via intermolecular annulation of N-aryl-2-aminopyridines and sulfoxonium ylides was proposed and accomplished. Excellent selectivity and good functional group tolerance of this transformation were observed. This protocol provides easy