Synthesis and biological activity of some transition-state inhibitors of human renin
摘要:
A series of renin inhibitors containing the dipeptide transition state mimics (2S,4S,5S)-5-amino-4-hydroxy-2-isopropyl-7-methyloctanoic acid (Leu (OH)/Val) and (2S,4S,5S)-5-amino-4-hydroxy-2-isopropyl-6-cyclohexylhexanoic acid (CHa /(OH)/Val) was prepared. A structure-activity study with Boc-Phe-His-Leu (OH)/Val-Ile-His-NH2 (8a) as starting material led to N-[(2S)-2-[(tert-butylsulfonyl)methyl]-3-phenylpropionyl]-His-Cha (OH)/ Val- NHC4H9-n (8i) which has the length of a tetrapeptide and contains only one natural amino acid. Compound 8i had an IC50 of 2 x 10(-9) M against human renin and showed high enzyme specificity; IC50 values against the related aspartic proteinases pepsin and cathepsin D were (8 x 10(-6) and 3 x 10(-6) M, respectively). In salt-depleted marmosets, 8i inhibited plasma renin activity PRA and lowered blood pressure for up to 2 h after oral administration of a dose of 10 mg/kg.
Renin inhibitors. Synthesis of transition-state analog inhibitors containing phosphorus acid derivatives at the scissile bond
摘要:
The synthesis of five amino phosphorus derivatives, 1a-e, is described. The derivatives were incorporated into a series (18) of analogues of the 5-14 portion of angiotensinogen, in most cases at the scissile Leu-Val bond. The resultant compounds were tested in vitro for their ability to inhibit human plasma renin. Replacement of the scissile bond with the phosphinic analogue of Leu10-Val11 (1b) gave the most potent inhibitors, having IC50 = 7.5 x 10(-8) M for H-Pro-His-Pro-Phe-His-(1b)-Ile-His-Lys-OH and IC50 = 1.0 x 10(-7) M for Z-Arg-Arg-Pro-Phe-His-(1b)-Ile-His-NH2. The shorter phosphonic acid sequence Z-Pro-Phe-His-(1d) retained biological activity with an IC50 = 6.4 x 10(-6) M.
[EN] PTHR1 RECEPTOR COMPOUNDS<br/>[FR] COMPOSÉS DE RÉCEPTEURS PTHR1
申请人:ANCHOR THERAPEUTICS INC
公开号:WO2010053548A2
公开(公告)日:2010-05-14
The invention relates generally to compounds which are allosteric modulators (e.g., negative and positive allosteric modulators, allosteric agonists, and ago-allosteric modulators) of the G protein coupled receptor PTHRl, also known as parathyroid hormone/parathyroid hormone related protein receptor. The PTHRl compounds are derived from the intracellular loops and domains of the PTHRl receptor. The invention also relates to the use of these PTHRl receptor compounds and pharmaceutical compositions comprising the PTHRl receptor compounds in the treatment of diseases and conditions associated with PTHRl receptor modulation, such as osteoporosis; humoral hypercalcemia of malignancy; osteolytic and osteoblastic metastasis to bone; primary and secondary hyperparathyroidism associated increase in bone absorption; vascular calcification; psychiatric disorders and cognitive disorders associated with hyperparathyroidism; dermatological disorders; and excess hair growth.