The putative diamine N-acetyltransferase D2023.4 has been cloned from the model nematode Caenorhabditis elegans. The 483 bp open reading frame of the cDNA encodes a deduced polypeptide of 18.6 kDa. Accordingly, the recombinantly expressed His6-tagged protein forms an enzymically active homodimer with a molecular mass of approx. 44000 Da. The protein belongs to the GNAT (GCN5-related N-acetyltransferase) superfamily, and its amino acid sequence exhibits considerable similarity to mammalian spermidine/spermine-N1-acetyltransferases. However, neither the polyamines spermidine and spermine nor the diamines putrescine and cadaverine were efficiently acetylated by the protein. The smaller diamines diaminopropane and ethylenediamine, as well as L-lysine, represent better substrates, but, surprisingly, the enzyme most efficiently catalyses the N-acetylation of amino acids analogous with L-lysine. As determined by the kcat/Km values, the C. elegans N-acetyltransferase prefers thialysine [S-(2-aminoethyl)-L-cysteine], followed by O-(2-aminoethyl)-L-serine and S-(2-aminoethyl)-D,L-homocysteine. Reversed-phase HPLC and mass spectrometric analyses revealed that N-acetylation of L-lysine and L-thialysine occurs exclusively at the amino moiety of the side chain. Remarkably, heterologous expression of C. elegans N-acetyltransferase D2023.4 in Escherichia coli, which does not possess a homologous gene, results in a pronounced resistance against the anti-metabolite thialysine. Furthermore, C. elegans N-acetyltransferase D2023.4 exhibits the highest homology with a number of GNATs found in numerous genomes from bacteria to mammals that have not been biochemically characterized so far, suggesting a novel group of GNAT enzymes closely related to spermidine/spermine-N1-acetyltransferase, but with a distinct substrate specificity. Taken together, we propose to name the enzyme ‘thialysine Nε-acetyltransferase’.
Spermidine/spermine-N1-acetyltransferase (SSAT1) is a short-lived polyamine catabolic enzyme inducible by polyamines and polyamine analogues. Induction of SSAT1 plays an important role in polyamine homoeostasis, since the N1-acetylated polyamines can be excreted or oxidized by acetylpolyamine oxidase. We have purified a recombinant human acetyltransferase (SSAT2) that shares 45% identity and 61% homology with human SSAT1, but is only distally related to other known members of the GNAT (GCN5-related N-acetyltransferase) family. Like SSAT1, SSAT2 is widely expressed, but did not turn over rapidly, and levels were unaffected by treatments with polyamine analogues. Despite similarity in sequence to SSAT1, polyamines were found to be poor substrates of purified SSAT2, having Km values in the low millimolar range and kcat values of <0.01 s−1. The kcat/Km values for spermine and spermidine for SSAT2 were <0.0003% those of SSAT1. Expression of SSAT2 in NIH-3T3 cells was not detrimental to growth, and did not reduce polyamine content or increase acetylpolyamines. These results indicate that SSAT2 is not a polyamine catabolic enzyme, and that polyamines are unlikely to be its natural intracellular substrates. A promising candidate for the physiological substrate of SSAT2 is thialysine [S-(2-aminoethyl)-L-cysteine], which is acetylated predominantly at the ε-amino group with Km and kcat values of 290 μM and 5.2 s−1. Thialysine is a naturally occurring modified amino acid that can undergo metabolism to form cyclic ketimine derivatives found in the brain and as urinary metabolites, which can undergo further reaction to form antioxidants. SSAT2 should be renamed ‘thialysine Nε-acetyltransferase’, and may regulate this pathway.