We present the design of molecular materials for ultimate use in solid-state solar cells. The molecular materials are semi-rigid oligomeric rods of defined length with metalloporphyrins in the backbone and a carboxy group at one end for attachment to a surface. The rods are designed to absorb visible light, and then undergo excited-state energy transfer and ground-state hole transfer in opposite directions along the length of the rod. The rational synthesis of the multiporphyrin arrays relies on joining porphyrin building blocks in an efficient and controlled manner. Several porphyrin building blocks have been synthesized that bear bromophenyl, iodophenyl, trimethylsilylethynylphenyl and/or ethynylphenyl substituents for use in a copper-free Sonogashira reaction using Pd2(dba)3 and P(o-tol)3. Competition experiments performed on equimolar quantities of an iodo-porphyrin and a bromo-porphyrin with an ethynyl-porphyrin
show iodo + ethyne coupling with a low amount (35 °C) or undetectable amount (22 °C) of bromo + ethyne coupling. Efficient coupling of bromo-porphyrins with ethynyl-porphyrins was achieved using the same copper-free Sonogashira reaction conditions at higher temperature (50 °C or 80 °C). These findings allow successive coupling reactions to be achieved using substrates bearing iodo and bromo synthetic handles. Thus, a porphyrin-based tetrad (or pentad) was synthesized with a final convergent coupling of a bromo-substituted dyad (or triad) and an ethynyl-substituted dyad. A porphyrin triad was prepared by sequential iodo + ethyne coupling reactions. The triad, tetrad, and pentad each are comprised of a terminal magnesium porphyrin bearing one carboxy group (for surface attachment) and two pentafluorophenyl groups; the remaining porphyrins in each array are present as the zinc chelate. Electrochemical
characterization of benchmark porphyrins indicates the presence of the desired electrochemical gradient for hole hopping in the arrays. Static absorption data indicate that the arrays are weakly coupled, while static fluorescence data indicate that the excited-state energy flows in high yield to the terminal magnesium porphyrin. Time-resolved spectroscopic analysis leads to rate constants in THF of (9 ps)−1, (15 ps)−1, and (30 ps)−1 for ZnMg dyad 20, Zn2Mg triad 13, and Zn3Mg tetrad 15, respectively, and quantum efficiencies ≥99% for energy flow to the magnesium porphyrin in each case. These design and synthesis strategies should be useful for the construction of materials for molecular-based solar cells.
我们介绍了用于固态太阳能电池的终极应用的分子材料的设计。这些分子材料是具有特定长度的半刚性寡聚
棒,其骨架中含有
金属
卟啉,一端带有羧基以附着于表面。这些
棒设计用于吸收可见光,然后在
棒的长度上沿着相反方向进行激发态能量传递和基态空穴传递。多
卟啉阵列的合理合成依赖于以高效且受控的方式连接
卟啉构建块。已经合成了几种带有
溴苯基、
碘苯基、三
甲基硅乙炔基
苯基和/或
乙炔基
苯基的
卟啉构建块,用于在无
铜Sonogashira反应中使用Pd2(dba)3和P(o-tol)3。在等摩尔量的
碘卟啉和
溴卟啉与
乙炔基
卟啉的竞争实验中,
碘+
乙炔偶联在低量(35°C)或无法检测量(22°C)下,而
溴+
乙炔偶联未发生。在更高温度(50°C或80°C)下,使用相同的无
铜Sonogashira反应条件实现了
溴卟啉与
乙炔基
卟啉的高效偶联。这些发现允许使用带有
碘和
溴合成柄的底物实现连续偶联反应。因此,通过最终的汇聚偶联反应合成具有
溴取代的双体(或三体)和
乙炔基取代的双体的基于
卟啉的四体(或五体)。通过连续的
碘+
乙炔偶联反应制备了
卟啉三体。三体、四体和五体各自由一个末端带有羧基(用于表面附着)和两个
五氟苯基的
镁卟啉组成;每个阵列中的其余
卟啉作为
锌螯合物存在。基准
卟啉的电
化学表征显示了阵列中空穴跳跃所需的电
化学梯度的存在。静态吸收数据显示阵列是弱耦合的,而静态荧光数据显示激发态能量高效流向末端
镁卟啉。时间分辨光谱分析得出了THF中的速率常数,分别为ZnMg双体20的(9 ps)−1、Zn2Mg三体13的(15 ps)−1和Zn3Mg四体15的(30 ps)−1,且每次能量流向
镁卟啉的量子效率≥99%。这些设计和合成策略应有助于构建基于分子的太阳能电池材料。