摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

heptakis[6-(chloroacetamido)-6-deoxy]cyclomaltoheptaose | 220186-48-1

中文名称
——
中文别名
——
英文名称
heptakis[6-(chloroacetamido)-6-deoxy]cyclomaltoheptaose
英文别名
2-chloro-N-[[(1S,3R,5R,6S,8R,10R,11S,13R,15R,16S,18R,20R,21S,23R,25R,26S,28R,30R,31S,33R,35R,36R,37R,38R,39R,40R,41R,42R,43R,44R,45R,46R,47R,48R,49R)-10,15,20,25,30,35-hexakis[[(2-chloroacetyl)amino]methyl]-36,37,38,39,40,41,42,43,44,45,46,47,48,49-tetradecahydroxy-2,4,7,9,12,14,17,19,22,24,27,29,32,34-tetradecaoxaoctacyclo[31.2.2.23,6.28,11.213,16.218,21.223,26.228,31]nonatetracontan-5-yl]methyl]acetamide
heptakis[6-(chloroacetamido)-6-deoxy]cyclomaltoheptaose化学式
CAS
220186-48-1
化学式
C56H84Cl7N7O35
mdl
——
分子量
1663.48
InChiKey
JRJNCRSFSAMFNS-YWBSARSQSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -10.7
  • 重原子数:
    105
  • 可旋转键数:
    21
  • 环数:
    21.0
  • sp3杂化的碳原子比例:
    0.88
  • 拓扑面积:
    616
  • 氢给体数:
    21
  • 氢受体数:
    35

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    heptakis[6-(chloroacetamido)-6-deoxy]cyclomaltoheptaose 在 sodium azide 作用下, 以 N,N-二甲基甲酰胺 为溶剂, 反应 16.0h, 以67%的产率得到heptakis[6-(azidoacetamido)-6-deoxy]cyclomaltoheptaose
    参考文献:
    名称:
    基于β-环糊精的炭疽毒素抑制剂的对称互补指导设计:面选择性功能化聚阳离子簇的合成及其相对活性
    摘要:
    通过利用面选择性Cu I催化的叠氮化物-炔烃1,3-环加成反应,胺-异硫氰酸酯偶联以及烯丙基氢硼化-氧化/开发了三种基于β-环糊精(βCD)支架的潜在炭疽毒素抑制剂新系列。羟基→胺替代反应。分子设计遵循均相官能化的聚阳离子βCD衍生物与保护性抗原(PA)之间的“对称性-互补性”概念,PA是已知形成C 7的炭疽毒素的一种成分致死和浮肿因子利用细胞膜上的对称孔获得细胞溶质的通道。本文报道了一系列阳离子分子的数量,排列和表面位置不同的βCD衍生物的合成和抗毒素活性。这些结果为新候选人对抗炭疽威胁的结构-活动关系发展计划奠定了基础。
    DOI:
    10.1002/cmdc.201000419
  • 作为产物:
    描述:
    氯乙酸酐全氨基倍他环糊精甲醇 为溶剂, 反应 22.0h, 以98%的产率得到heptakis[6-(chloroacetamido)-6-deoxy]cyclomaltoheptaose
    参考文献:
    名称:
    Synthesis of Per-Glycosylated β-Cyclodextrins Having Enhanced Lectin Binding Affinity
    摘要:
    A cyclomaltooligosaccharide containing seven alpha-(1-->4)-D-glucopyranosyl units (beta-cyclodextrins) was transformed into heptakis 6-deoxy-6-iodo (13) and heptakis 6-amino-6-deoxy (25) derivatives using known procedures. Compound 13 was peracetylated and condensed in one pot with the known peracetylated pseudothiouronium salts of beta-D-glucopyranose (4), B-D-galactopyranose (5), or beta-D-N-acetylglucopyranosylsamine (6) or with alpha-D-1-deoxy-1-thiomannopyranose (8) using cesium carbonate in dimethylformamide, Alternatively, peracetylated 4-aminophenyl-alpha-D-mannopyranoside (9) was transformed into either extended pseudothiouronium 11 following N-chloroacetylation and nucleophilic substitution by thiourea or into 4-isothiocyanatophenyl alpha-D-mannopyranoside 12 using thiophosgene. Each of the four thiolated sugar derivatives 4-6 or 8 were also coupled to heptakis chloroacetamido beta-CD 26 obtained from heptakis amine 25 after N-chloroacetylation. Further incorporation of a hexamethylenediamine spacer arm onto heptakis iodo beta-CD 13 using thiol derived from mono-Boc derivative 36 and coupling to isothiocyanate 12 after suitable deprotection afforded permannosylated derivative 38. Zemplen de-O-acetylation of all beta-CD derivatives provided water-soluble persubstituted compounds containing D-glucopyranosides (18, 30), D-galactopyranosides (19, 31), D-N-acetylglucosaminides (20, 32), and D-mannopyranosides (22, 24, 34, 39), respectively The compounds were then evaluated for their relative binding properties toward natural carbohydrate binding plant lectins using both microtiter plate competitive inhibition experiments, double sandwich assays using horseradish peroxidase labeled lectins and by turbidimetric assays. The plant lectins from Pisum sativum (pea), Arachis hypogea (peanut), Canavalia ensiformis (Concanavalin A), and Triticum vulgaris (WGA, wheat germ agglutinin) were used for beta-D-glucose, beta-D-galactose, alpha-D-mannose, and beta-D-N-acetylglucosamine, respectively. All persubstituted beta-CDs showed good to excellent inhibitory properties together with abilities to cross-link their analogous plant lectins. The capacity of perglycosylated beta-CDs to anchor both microtiter plate-coated lectins and their corresponding peroxidase-labeled derivatives further confirmed the usefulness of these multivalent neoglycoconjugates in bioanalytical assays.
    DOI:
    10.1021/jo981576y
点击查看最新优质反应信息

文献信息

  • Symmetry Complementarity-Guided Design of Anthrax Toxin Inhibitors Based on β-Cyclodextrin: Synthesis and Relative Activities of Face-Selective Functionalized Polycationic Clusters
    作者:Alejandro Díaz-Moscoso、Alejandro Méndez-Ardoy、Fernando Ortega-Caballero、Juan M. Benito、Carmen Ortiz Mellet、Jacques Defaye、Tanisha M. Robinson、Adiamseged Yohannes、Vladimir A. Karginov、José M. García Fernández
    DOI:10.1002/cmdc.201000419
    日期:2011.1.3
    potential anthrax toxin inhibitors based on the β‐cyclodextrin (βCD) scaffold were developed by exploiting face‐selective CuI‐catalyzed azide–alkyne 1,3‐cycloadditions, amine–isothiocyanate coupling, and allyl group hydroboration–oxidation/hydroxy → amine replacement reactions. The molecular design follows the “symmetry–complementarity” concept between homogeneously functionalized polycationic βCD derivatives
    通过利用面选择性Cu I催化的叠氮化物-炔烃1,3-环加成反应,胺-异硫氰酸酯偶联以及烯丙基氢硼化-氧化/开发了三种基于β-环糊精(βCD)支架的潜在炭疽毒素抑制剂新系列。羟基→胺替代反应。分子设计遵循均相官能化的聚阳离子βCD衍生物与保护性抗原(PA)之间的“对称性-互补性”概念,PA是已知形成C 7的炭疽毒素的一种成分致死和浮肿因子利用细胞膜上的对称孔获得细胞溶质的通道。本文报道了一系列阳离子分子的数量,排列和表面位置不同的βCD衍生物的合成和抗毒素活性。这些结果为新候选人对抗炭疽威胁的结构-活动关系发展计划奠定了基础。
  • Synthesis of Per-Glycosylated β-Cyclodextrins Having Enhanced Lectin Binding Affinity
    作者:Juan José García-López、Fernando Hernández-Mateo、Joaquín Isac-García、Jin Mi Kim、René Roy、Francisco Santoyo-González、Antonio Vargas-Berenguel
    DOI:10.1021/jo981576y
    日期:1999.1.1
    A cyclomaltooligosaccharide containing seven alpha-(1-->4)-D-glucopyranosyl units (beta-cyclodextrins) was transformed into heptakis 6-deoxy-6-iodo (13) and heptakis 6-amino-6-deoxy (25) derivatives using known procedures. Compound 13 was peracetylated and condensed in one pot with the known peracetylated pseudothiouronium salts of beta-D-glucopyranose (4), B-D-galactopyranose (5), or beta-D-N-acetylglucopyranosylsamine (6) or with alpha-D-1-deoxy-1-thiomannopyranose (8) using cesium carbonate in dimethylformamide, Alternatively, peracetylated 4-aminophenyl-alpha-D-mannopyranoside (9) was transformed into either extended pseudothiouronium 11 following N-chloroacetylation and nucleophilic substitution by thiourea or into 4-isothiocyanatophenyl alpha-D-mannopyranoside 12 using thiophosgene. Each of the four thiolated sugar derivatives 4-6 or 8 were also coupled to heptakis chloroacetamido beta-CD 26 obtained from heptakis amine 25 after N-chloroacetylation. Further incorporation of a hexamethylenediamine spacer arm onto heptakis iodo beta-CD 13 using thiol derived from mono-Boc derivative 36 and coupling to isothiocyanate 12 after suitable deprotection afforded permannosylated derivative 38. Zemplen de-O-acetylation of all beta-CD derivatives provided water-soluble persubstituted compounds containing D-glucopyranosides (18, 30), D-galactopyranosides (19, 31), D-N-acetylglucosaminides (20, 32), and D-mannopyranosides (22, 24, 34, 39), respectively The compounds were then evaluated for their relative binding properties toward natural carbohydrate binding plant lectins using both microtiter plate competitive inhibition experiments, double sandwich assays using horseradish peroxidase labeled lectins and by turbidimetric assays. The plant lectins from Pisum sativum (pea), Arachis hypogea (peanut), Canavalia ensiformis (Concanavalin A), and Triticum vulgaris (WGA, wheat germ agglutinin) were used for beta-D-glucose, beta-D-galactose, alpha-D-mannose, and beta-D-N-acetylglucosamine, respectively. All persubstituted beta-CDs showed good to excellent inhibitory properties together with abilities to cross-link their analogous plant lectins. The capacity of perglycosylated beta-CDs to anchor both microtiter plate-coated lectins and their corresponding peroxidase-labeled derivatives further confirmed the usefulness of these multivalent neoglycoconjugates in bioanalytical assays.
查看更多