Subtly Modulating Glycogen Synthase Kinase 3 β: Allosteric Inhibitor Development and Their Potential for the Treatment of Chronic Diseases
摘要:
Glycogen synthase kinase 3 beta (GSK-3 beta) is a central target in several unmet diseases. To increase the specificity of GSK-3 beta inhibitors in chronic treatments, we developed small molecules allowing subtle modulation of GSK-3 beta activity. Design synthesis, structure activity relationships, and binding mode of quinoline-3-carbohydrazide derivatives as allosteric modulators of GSK-3 beta are presented here. Furthermore, we show how allosteric binders may overcome the beta-catenin side effects associated with strong GSK-3 beta inhibition. The therapeutic potential of some of these modulators has been tested in human samples from patients with congenital myotonic dystrophy type 1 (CDM1) and spinal it atrophy (SMA) patients. We found that compound 53 improves delayed myogenesis in CDM1 myoblasts, while compounds 1 and 53 have neuroprotective properties in SMA-derived cells. These findings suggest that the allosteric modulators of GSK-3 beta may be used for future development of drugs for DM1, SMA, and other chronic diseases where GSK-3 beta inhibition exhibits therapeutic effects.
Subtly Modulating Glycogen Synthase Kinase 3 β: Allosteric Inhibitor Development and Their Potential for the Treatment of Chronic Diseases
作者:Valle Palomo、Daniel I. Perez、Carlos Roca、Cara Anderson、Natalia Rodríguez-Muela、Concepción Perez、Jose A. Morales-Garcia、Julio A. Reyes、Nuria E. Campillo、Ana M. Perez-Castillo、Lee L. Rubin、Lubov Timchenko、Carmen Gil、Ana Martinez
DOI:10.1021/acs.jmedchem.7b00395
日期:2017.6.22
Glycogen synthase kinase 3 beta (GSK-3 beta) is a central target in several unmet diseases. To increase the specificity of GSK-3 beta inhibitors in chronic treatments, we developed small molecules allowing subtle modulation of GSK-3 beta activity. Design synthesis, structure activity relationships, and binding mode of quinoline-3-carbohydrazide derivatives as allosteric modulators of GSK-3 beta are presented here. Furthermore, we show how allosteric binders may overcome the beta-catenin side effects associated with strong GSK-3 beta inhibition. The therapeutic potential of some of these modulators has been tested in human samples from patients with congenital myotonic dystrophy type 1 (CDM1) and spinal it atrophy (SMA) patients. We found that compound 53 improves delayed myogenesis in CDM1 myoblasts, while compounds 1 and 53 have neuroprotective properties in SMA-derived cells. These findings suggest that the allosteric modulators of GSK-3 beta may be used for future development of drugs for DM1, SMA, and other chronic diseases where GSK-3 beta inhibition exhibits therapeutic effects.