摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3,4-dihydro-1-(2'-methoxycarbonylphenyl)isoquinoline

中文名称
——
中文别名
——
英文名称
3,4-dihydro-1-(2'-methoxycarbonylphenyl)isoquinoline
英文别名
1-(2-methoxycarbonylphenyl)-3,4-dihydroisoquinoline;Methyl 2-(3,4-dihydroisoquinolin-1-yl)benzoate;methyl 2-(3,4-dihydroisoquinolin-1-yl)benzoate
3,4-dihydro-1-(2'-methoxycarbonylphenyl)isoquinoline化学式
CAS
——
化学式
C17H15NO2
mdl
——
分子量
265.312
InChiKey
AJIRUAFQIPUVOI-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.2
  • 重原子数:
    20
  • 可旋转键数:
    3
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.18
  • 拓扑面积:
    38.7
  • 氢给体数:
    0
  • 氢受体数:
    3

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    3,4-dihydro-1-(2'-methoxycarbonylphenyl)isoquinoline盐酸硫酸 、 palladium 10% on activated carbon 、 三氧化硫 作用下, 以 为溶剂, 反应 2.0h, 生成 7H-二苯并[de,H]喹啉-7-酮
    参考文献:
    名称:
    2D MI-DRAGON: A new predictor for protein–ligands interactions and theoretic-experimental studies of US FDA drug-target network, oxoisoaporphine inhibitors for MAO-A and human parasite proteins
    摘要:
    There are many pairs of possible Drug-Proteins Interactions that may take place or not (DPIs/nDPIs) between drugs with high affinity/non-affinity for different proteins. This fact makes expensive in terms of time and resources, for instance, the determination of all possible ligands-protein interactions for a single drug. In this sense, we can use Quantitative Structure-Activity Relationships (QSAR) models to carry out rational DPIs prediction. Unfortunately, almost all QSAR models predict activity against only one target. To solve this problem we can develop multi-target QSAR (mt-QSAR) models. In this work, we introduce the technique 2D MI-DRAGON a new predictor for DPIs based on two different well-known software. We use the software MARCH-INSIDE (MI) to calculate 3D structural parameters for targets and the software DRAGON was used to calculated 2D molecular descriptors all drugs showing known DPIs present in the Drug Bank (US FDA benchmark dataset). Both classes of parameters were used as input of different Artificial Neural Network (ANN) algorithms to seek an accurate non-linear mt-QSAR predictor. The best ANN model found is a Multi-Layer Perceptron (MLP) with profile MLP 21:21-31-1:1. This MLP classifies correctly 303 out of 339 DPIs (Sensitivity = 89.38%) and 480 out of 510 nDPIs (Specificity = 94.12%), corresponding to training Accuracy = 92.23%. The validation of the model was carried out by means of external predicting series with Sensitivity = 92.18% (625/678 DPIs: Specificity = 90.12% (730/780 nDPIs) and Accuracy = 91.06%. 2D MI-DRAGON offers a good opportunity for fast-track calculation of all possible DPIs of one drug enabling us to re-construct large drug-target or DPIs Complex Networks (CNs). For instance, we reconstructed the CN of the US FDA benchmark dataset with 855 nodes 519 drugs + 336 targets). We predicted CN with similar topology (observed and predicted values of average distance are equal to 6.7 vs. 6.6). These CNs can be used to explore large DPIs databases in order to discover both new drugs and/or targets. Finally, we illustrated in one theoretic-experimental study the practical use of 2D MI-DRAGON. We reported the prediction, synthesis, and pharmacological assay of 10 different oxoisoaporphines with MAO-A inhibitory activity. The more active compound OXO5 presented IC50 = 0.00083 mu M, notably better than the control drug Clorgyline. (C) 2011 Elsevier Masson SAS. All rights reserved.
    DOI:
    10.1016/j.ejmech.2011.09.045
  • 作为产物:
    描述:
    2,3-dihydro-3-hydroxy-2-(2-phenylethyl)-1H-isoindol-1-one盐酸 、 potassium hydroxide 作用下, 以 甲醇 为溶剂, 反应 28.0h, 生成 3,4-dihydro-1-(2'-methoxycarbonylphenyl)isoquinoline
    参考文献:
    名称:
    Synthesis and antiplasmodial activity of some 1-azabenzanthrone derivatives
    摘要:
    Some synthetic 1-azabenzanthrones (7H-dibenzo[de,h]quinolin-7-ones) are weakly to moderately cytotoxic, suggesting that they might also show antiparasitic activity. We have now tested a small collection of these compounds in vitro against a chloroquine-resistant Plasmodium falciparum strain, comparing their cytotoxicity against normal human fibroblasts. Our results indicate that 5-methoxy-1-azabenzanthrone and its 2,3-dihydro analogue have low micromolar antiplasmodial activities and showed more than 10-fold selectivity against the parasite, indicating that the dihydro compound, in particular, might serve as a lead compound for further development. (C) 2012 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmcl.2012.10.092
点击查看最新优质反应信息

文献信息

  • Complete structural and spectral assignment of oxoisoaporphines by HMQC and HMBC experiments
    作者:Eduardo Sobarzo-Sánchez、Bruce K. Cassels、Carolina Jullian、Luis Castedo
    DOI:10.1002/mrc.1177
    日期:2003.4
    The oxoisoaporphines 2,3‐dihydro‐7H‐dibenzo[de,h]quinolin‐7‐one, 2,3‐dihydro‐5‐methoxy‐7H‐dibenzo [de,h] quinolin‐7‐one, 5‐methoxy‐6‐hydroxy‐2,3‐dihydro‐7H‐dibenzo[de,h]quinolin‐7‐one, 5,6‐dimethoxy‐2,3‐dihydro‐7H‐dibenzo[de,h]quinolin‐7‐one and 5,6‐methylenedi‐oxy‐2,3‐dihydro‐7H‐dibenzo[de,h]quinolin‐7‐one were prepared by cyclization of phenylethylaminophthalides with polyphosphoric acid or by treating
    2,3-二氢-7H-二苯并[de,h]喹啉-7-酮、2,3-二氢-5-甲氧基-7H-二苯并[de,h]喹啉-7-酮、5-甲氧基-7-酮6-羟基-2,3-二氢-7H-二苯并[de,h]喹啉-7-one, 5,6-二甲氧基-2,3-二氢-7H-二苯并[de,h]喹啉-7-one和5,6-methylenedi-oxy-2,3-dihydro-7H-dibenzo[de,h]quinolin-7-one 通过苯乙氨基苯酞与多磷酸的环化或通过处理 1-(2-carboxyphenyl)-3,4 制备-二氢异喹啉盐酸盐与硫酸在 0 °C 下反应。使用一维和二维核磁共振技术的组合确认了结构,并完全确定了 1H 和 13C 核磁共振谱。版权所有 © 2003 John Wiley & Sons, Ltd.
  • 2D MI-DRAGON: A new predictor for protein–ligands interactions and theoretic-experimental studies of US FDA drug-target network, oxoisoaporphine inhibitors for MAO-A and human parasite proteins
    作者:Francisco Prado-Prado、Xerardo García-Mera、Manuel Escobar、Eduardo Sobarzo-Sánchez、Matilde Yañez、Pablo Riera-Fernandez、Humberto González-Díaz
    DOI:10.1016/j.ejmech.2011.09.045
    日期:2011.12
    There are many pairs of possible Drug-Proteins Interactions that may take place or not (DPIs/nDPIs) between drugs with high affinity/non-affinity for different proteins. This fact makes expensive in terms of time and resources, for instance, the determination of all possible ligands-protein interactions for a single drug. In this sense, we can use Quantitative Structure-Activity Relationships (QSAR) models to carry out rational DPIs prediction. Unfortunately, almost all QSAR models predict activity against only one target. To solve this problem we can develop multi-target QSAR (mt-QSAR) models. In this work, we introduce the technique 2D MI-DRAGON a new predictor for DPIs based on two different well-known software. We use the software MARCH-INSIDE (MI) to calculate 3D structural parameters for targets and the software DRAGON was used to calculated 2D molecular descriptors all drugs showing known DPIs present in the Drug Bank (US FDA benchmark dataset). Both classes of parameters were used as input of different Artificial Neural Network (ANN) algorithms to seek an accurate non-linear mt-QSAR predictor. The best ANN model found is a Multi-Layer Perceptron (MLP) with profile MLP 21:21-31-1:1. This MLP classifies correctly 303 out of 339 DPIs (Sensitivity = 89.38%) and 480 out of 510 nDPIs (Specificity = 94.12%), corresponding to training Accuracy = 92.23%. The validation of the model was carried out by means of external predicting series with Sensitivity = 92.18% (625/678 DPIs: Specificity = 90.12% (730/780 nDPIs) and Accuracy = 91.06%. 2D MI-DRAGON offers a good opportunity for fast-track calculation of all possible DPIs of one drug enabling us to re-construct large drug-target or DPIs Complex Networks (CNs). For instance, we reconstructed the CN of the US FDA benchmark dataset with 855 nodes 519 drugs + 336 targets). We predicted CN with similar topology (observed and predicted values of average distance are equal to 6.7 vs. 6.6). These CNs can be used to explore large DPIs databases in order to discover both new drugs and/or targets. Finally, we illustrated in one theoretic-experimental study the practical use of 2D MI-DRAGON. We reported the prediction, synthesis, and pharmacological assay of 10 different oxoisoaporphines with MAO-A inhibitory activity. The more active compound OXO5 presented IC50 = 0.00083 mu M, notably better than the control drug Clorgyline. (C) 2011 Elsevier Masson SAS. All rights reserved.
  • Synthesis and antiplasmodial activity of some 1-azabenzanthrone derivatives
    作者:Vicente Castro-Castillo、Cristian Suárez-Rozas、Adriana Pabón、Edwin G. Pérez、Bruce K. Cassels、Silvia Blair
    DOI:10.1016/j.bmcl.2012.10.092
    日期:2013.1
    Some synthetic 1-azabenzanthrones (7H-dibenzo[de,h]quinolin-7-ones) are weakly to moderately cytotoxic, suggesting that they might also show antiparasitic activity. We have now tested a small collection of these compounds in vitro against a chloroquine-resistant Plasmodium falciparum strain, comparing their cytotoxicity against normal human fibroblasts. Our results indicate that 5-methoxy-1-azabenzanthrone and its 2,3-dihydro analogue have low micromolar antiplasmodial activities and showed more than 10-fold selectivity against the parasite, indicating that the dihydro compound, in particular, might serve as a lead compound for further development. (C) 2012 Elsevier Ltd. All rights reserved.
查看更多

同类化合物

鼻通 诺斯卡品杂质2 美莫汀盐酸盐 美莫汀 法莫汀盐酸盐 氯化可替宁 异喹啉,3,4-二氢-6,7-二甲氧基-3,3-二甲基- 异喹啉,3,4-二氢-6,7-二甲氧基-1-苯基-,盐酸 异喹啉,3,4-二氢-5,6,7-三甲氧基-1-甲基- 丁-2-烯二酸;7-甲基-3-[(4-甲基哌嗪-1-基)甲基]-1-苯基-3,4-二氢异喹啉 7-苄氧基-6-甲氧基-3,4-二氢异吲哚 7-羟基-6-甲氧基-3,4-二氢异喹啉 7-硝基-3,4-二氢异喹啉 7-甲基-3,4-二氢异喹啉 7-溴二氢异喹啉 7-溴-3,4-二氢异喹啉盐酸盐 7-溴-1-异丙基-3,4-二氢异喹啉 7-氯-1-苯基-3,4-二氢异喹啉 7-氟-3,4-二氢异喹啉 7-氟-1-甲基-3,4-二氢异喹啉 7,8-二甲氧基-3,4-二氢异喹啉 7,8-二氢-[1,3]二氧代[4,5-g]异喹啉 7,8-二氢-5-[4-(异丙基磺酰基)苯基]-1,3-二氧杂环戊并[4,5-g]异喹啉 6-苄氧基-7-甲氧基-3,4-二氢-异喹啉 6-羟基-7-甲氧基-2-甲基-3,4-二氢异喹啉正离子 6-甲氧基-3,4-二氢-异喹啉 6-甲氧基-1-甲基-3,4-二氢异喹啉 6-氯-1-(2-氯-苯基)-7-甲氧基-3,4-二氢-异喹啉 6-氯-1-(2-异丙基-苯基)-7-甲氧基-3,4-二氢-异喹啉 6-氯-1-(2,6-二甲基-苯基)-7-甲氧基-3,4-二氢-异喹啉 6-氟-3,4-二氢异喹啉 6,7-二甲氧基-3-甲基-3,4-二氢异喹啉盐酸盐 6,7-二甲氧基-3,4-二氢异喹啉盐酸盐 6,7-二甲氧基-3,4-二氢异喹啉 6,7-二甲氧基-1-(4-甲氧基苯基)-3,4-二氢异喹啉 6,7-二甲氧基-1-(3,4-二甲氧基苯基)-3-羟基甲基-3,4-二氢异喹啉 6,7-二甲氧基-1,3,3-三甲基-3,4-二氢异喹啉氢碘化 6,7-二甲-1,3-二甲基-3,4-二氢异喹啉盐酸盐 6,7-二乙氧基-3,4-二氢异喹啉盐酸盐 5-甲氧基-1-甲基-3,4-二氢异喹啉 5-甲基吡咯-3-腈 5-甲基-7,8-二氢-[1,3]二氧戊环并[4,5-G]异喹啉 5-甲基-3,4-二氢-异喹啉 5-氯-2-(6,7-二甲氧基-3,4-二氢异喹啉-1-基)苯胺 5,8-二甲氧基-3-甲基-3,4-二氢-异喹啉 4-甲氧基-7,8-二氢[1,3]二氧杂环戊并[4,5-g]异喹啉 4-甲氧基-6-甲基-7,8-二氢[1,3]二氧杂环戊并[4,5-g]异喹啉-6-鎓碘化物 4-氯-2-(6,7-二甲氧基-3,4-二氢异喹啉-1-基)苯胺 4-(6,7-二甲氧基-3,4-二氢异喹啉-1-基)庚二腈 4-(3,4-二氢异喹啉-1-基)苯甲腈