Thioacetic Acid/NaSH-Mediated Synthesis of N-Protected Amino Thioacids and Their Utility in Peptide Synthesis
摘要:
Thioacids are recently gaining momentum due to their versatile reactivity. The reactivity of thioacids has been widely explored in the selective amide/peptide bond formation. Thioacids are generally synthesized from the reaction between activated carboxylic acids such as acid chlorides, active esters, etc., and Na2S, H2S, or NaSH. We sought to investigate whether the versatile reactivity of the thioacids can be tuned for the conversion of carboxylic acids into corresponding thioacids in the presence of NaSH. Herein, we report that thioacetic acid- and NaSH-mediated synthesis of N-protected amino thioacids from the corresponding N-protected amino acids, oxidative dimerization of thioacids, crystal conformations of thioacid oxidative dimers, and the utility of thioacids and oxidative dimers in peptide synthesis. Our results suggest that peptides can be synthesized without using standard coupling agents.
We report herein an efficient protocol for the synthesis of N-urethane-protected α-amino/peptide thioacids from their corresponding acids mediated by EDC and Na2S. The fast reaction under mild conditions enabled the process to be completed in shorter duration with good yield circumventing column purification. The chemistry is compatible with a wide variety of urethane protecting groups, side-chain functionalities, and sterically hindered amino acids.
Epimerization-Free Block Synthesis of Peptides from Thioacids and Amines with the Sanger and Mukaiyama Reagents
作者:David Crich、Indrajeet Sharma
DOI:10.1002/anie.200805782
日期:2009.3.16
reaction of C‐terminal thioacids derived from protected amino acids and peptides with the Sanger reagent and other electron‐deficient aryl halides in the presence of a free amine immediately form a peptide bond with the amine. This essentially epimerization‐free method was used for the 4+4 block synthesis of a hindered octapeptide (see scheme; Boc, Pbf, and Trt are protectinggroups).
A traceless approach to amide and peptide construction from thioacids and dithiocarbamate-terminal amines
作者:Wenteng Chen、Jiaan Shao、Miao Hu、Wanwan Yu、Marc A. Giulianotti、Richard A. Houghten、Yongping Yu
DOI:10.1039/c2sc21317f
日期:——
with a range of unprotected side chains of aminoacid. The ability to produce amide or peptides by a traceless removal of the auxiliary is a significant virtue of the method. Meanwhile, the application of this new peptide-bond-forming reaction to the synthesis of novel endomorphin (EM) derivatives with various binding potencies was realized.
Compounds of Formula I:
and their pharmaceutically acceptable salts are useful for the inhibition of HIV reverse transcriptase. The compounds may also be useful for the prophylaxis or treatment of infection by HIV and in the prophylaxis, delay in the onset or progression, and treatment of AIDS. The compounds and their salts can be employed as ingredients in pharmaceutical compositions, optionally in combination with other antiviral agents, immunomodulators, antibiotics or vaccines
Processes For Forming Amide Bonds And Compositions Related Thereto
申请人:Liebeskind Lanny S.
公开号:US20120107902A1
公开(公告)日:2012-05-03
The disclosure relates to methods for producing amide bonds and reagents related thereto. In some embodiments, the disclosure relates to methods of producing an amide comprising mixing an O-silylated thionoester and an amine under conditions such that an amide is formed. In another embodiment, the disclosure relates to mixing a thiolacid, a silylating agent, and an amine under conditions such that an amide is formed.