Inhibition of 1-Deoxy-d-Xylulose-5-Phosphate Reductoisomerase by Lipophilic Phosphonates: SAR, QSAR, and Crystallographic Studies
摘要:
1-Deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is a novel target for developing new antibacterial (including antituberculosis) and antimalaria drugs. Forty-one lipophilic phosphonates, representing a new class of DXR inhibitors, were synthesized, among which 5-phenylpyridin-2-ylmethylphosphonic acid possesses the most activity against E. coli DXR (EcDXR) with a K-i of 420 nM. Structure-activity relationships (SAR) are discussed, which can be rationalized using our EcDXR:inhibitor structures, and a predictive quantitative SAR (QSAR) model is also developed. Since inhibition studies of DXR from Mycobacterium tuberculosis (MtDXR) have not been performed well, 48 EcDXR inhibitors with a broad chemical diversity were found, however, to generally exhibit considerably reduced activity against MtDXR. The crystal structure of a, MtDXR:inhibitor complex reveals the flexible loop containing the residues 198-208 has no strong interactions with the 3,4-dichlorophenyl group of the inhibitor, representing a structural basis for the reduced activity. Overall, these results provide implications in the future design and development of potent DXR inhibitors.
Efficient Conversions of Carboxylic Acids into<i>O</i>-Alkyl,<i>N</i>-Alkyl and<i>O</i>,<i>N</i>-Dialkylhydroxamic Acids
作者:Alan R. Katritzky、Nataliya Kirichenko、Boris V. Rogovoy
DOI:10.1055/s-2003-42488
日期:——
Carboxylic acids were conveniently converted into unsubstituted, N-alkyl-, O-alkyl-, and O,N-dialkylhydroxamic acids via acylbenzotriazole intermediates. The ready availability of the reagents, mild conditions, and easy handling of the intermediates are advantageous.
A metal-free iodine-mediated conversion of hydroxamates to esters
作者:Subhankar Ghosh、Jeet Banerjee、Rajat Ghosh、Shital K. Chattopadhyay
DOI:10.1080/00397911.2020.1737130
日期:2020.5.2
Abstract A metal-, oxidant-, and additive-free conversion of hydroxamates to esters have been achieved using molecular iodine as the reagent using a novel but not-so-explored heron-type rearrangement. The reaction proceeds with almost equal facility with substrates having either electron-donating or electron-withdrawing substituent. Similarly, α,ß-unsaturated, and sterically hindered ortho-substituted
Kinetics, Thermodynamics, and Structural Effects of Quinoline-2-Carboxylates, Zinc-Binding Inhibitors of New Delhi Metallo-β-lactamase-1 Re-sensitizing Multidrug-Resistant Bacteria for Carbapenems
Carbapenem resistance mediated by metallo-β-lactamases (MBL) such as New Delhi metallo-β-lactamase-1 (NDM-1) has become a major factor threatening the efficacy of essential β-lactam antibiotics. Starting from hit fragment dipicolinic acid (DPA), 8-hydroxy- and 8-sulfonamido-quinoline-2-carboxylic acids were developed as inhibitors of NDM-1 with highly improved inhibitory activity and binding affinity
作者:Zhao, Yusheng、Shakeri, Arash、Hefny, Ahmed A.、Rao, Praveen P. N.
DOI:10.1007/s00044-024-03256-6
日期:——
Inhibition of 1-Deoxy-<scp>d</scp>-Xylulose-5-Phosphate Reductoisomerase by Lipophilic Phosphonates: SAR, QSAR, and Crystallographic Studies
作者:Lisheng Deng、Jiasheng Diao、Pinhong Chen、Venugopal Pujari、Yuan Yao、Gang Cheng、Dean C. Crick、B. V. Venkataram Prasad、Yongcheng Song
DOI:10.1021/jm200363d
日期:2011.7.14
1-Deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is a novel target for developing new antibacterial (including antituberculosis) and antimalaria drugs. Forty-one lipophilic phosphonates, representing a new class of DXR inhibitors, were synthesized, among which 5-phenylpyridin-2-ylmethylphosphonic acid possesses the most activity against E. coli DXR (EcDXR) with a K-i of 420 nM. Structure-activity relationships (SAR) are discussed, which can be rationalized using our EcDXR:inhibitor structures, and a predictive quantitative SAR (QSAR) model is also developed. Since inhibition studies of DXR from Mycobacterium tuberculosis (MtDXR) have not been performed well, 48 EcDXR inhibitors with a broad chemical diversity were found, however, to generally exhibit considerably reduced activity against MtDXR. The crystal structure of a, MtDXR:inhibitor complex reveals the flexible loop containing the residues 198-208 has no strong interactions with the 3,4-dichlorophenyl group of the inhibitor, representing a structural basis for the reduced activity. Overall, these results provide implications in the future design and development of potent DXR inhibitors.