The influence of attractive, nonbonded interactions on the reactions of 1,2- and 1,3-hydroxyalkyl azides with ketones has been investigated through experimental and computational means. A series of 1,3-hydroxyalkyl azides bearing electronically tuned aromatic groups at the 2 position were prepared and reacted along with several derivatives designed to conformationally restrict the rotational orientation of the aromatic substituent. These studies showed that a cation-pi interaction between an aryl moiety and an N-2(+) leaving group plays a role in determining the stereoselectivity of these reactions. A series of ab initio calculations supported this hypothesis. A computational and experimental analysis suggested a primarily steric model for the analogous reactions of substituted 2-azido-1-ethanol analogues.
Nonbonded, Attractive Cation−π Interactions in Azide-Mediated Asymmetric Ring Expansion Reactions
作者:Christopher E. Katz、Timothy Ribelin、Donna Withrow、Yashar Basseri、Anna K. Manukyan、Amy Bermudez、Christian G Nuera、Victor W. Day、Douglas R. Powell、Jennifer L. Poutsma、Jeffrey Aubé
DOI:10.1021/jo800222r
日期:2008.5.1
The influence of attractive, nonbonded interactions on the reactions of 1,2- and 1,3-hydroxyalkyl azides with ketones has been investigated through experimental and computational means. A series of 1,3-hydroxyalkyl azides bearing electronically tuned aromatic groups at the 2 position were prepared and reacted along with several derivatives designed to conformationally restrict the rotational orientation of the aromatic substituent. These studies showed that a cation-pi interaction between an aryl moiety and an N-2(+) leaving group plays a role in determining the stereoselectivity of these reactions. A series of ab initio calculations supported this hypothesis. A computational and experimental analysis suggested a primarily steric model for the analogous reactions of substituted 2-azido-1-ethanol analogues.