Searching for Cyclin-Dependent Kinase Inhibitors Using a New Variant of the Cope Elimination
摘要:
beta-Piperidinoethylsulfides are oxidized by m-chloroperbenzoic acid to intermediates containing both N-oxide and sulfone functions. These undergo a Cope-type elimination to a vinylsulfone that can be captured by amines to afford beta-aminoethylsulfones. When a beta-aminoethylsulfone group is linked to the 4-position of a phenyl group attached at N-2 of O6-cyclohexylmethylguanine, the resulting derivatives are inhibitors of the cyclin-dependent kinase CDK2. One of the most potent inhibitors (IC50 = 45 nM) contained a N-3-hydroxypropyl group on the aminoethylsulfonyl substituent. The crystal structure of this inhibitor bound to CDK2/cyclin A was determined and shows an unusual network of hydrogen bonds. The synthetic methodology developed can be utilized in multiple-parallel format and has numerous potential applications in medicinal chemistry.
Searching for Cyclin-Dependent Kinase Inhibitors Using a New Variant of the Cope Elimination
作者:Roger J. Griffin、Andrew Henderson、Nicola J. Curtin、Aude Echalier、Jane A. Endicott、Ian R. Hardcastle、David R. Newell、Martin E. M. Noble、Lan-Zhen Wang、Bernard T. Golding
DOI:10.1021/ja060595j
日期:2006.5.1
beta-Piperidinoethylsulfides are oxidized by m-chloroperbenzoic acid to intermediates containing both N-oxide and sulfone functions. These undergo a Cope-type elimination to a vinylsulfone that can be captured by amines to afford beta-aminoethylsulfones. When a beta-aminoethylsulfone group is linked to the 4-position of a phenyl group attached at N-2 of O6-cyclohexylmethylguanine, the resulting derivatives are inhibitors of the cyclin-dependent kinase CDK2. One of the most potent inhibitors (IC50 = 45 nM) contained a N-3-hydroxypropyl group on the aminoethylsulfonyl substituent. The crystal structure of this inhibitor bound to CDK2/cyclin A was determined and shows an unusual network of hydrogen bonds. The synthetic methodology developed can be utilized in multiple-parallel format and has numerous potential applications in medicinal chemistry.