摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

微囊藻毒素(LR亚型) | 101043-37-2

中文名称
微囊藻毒素(LR亚型)
中文别名
微囊藻毒素LR;微囊藻毒素
英文名称
microcystin-LR
英文别名
cyclo-D-alanine-L-leucine-erythro-β-methyl-D-isoaspartic acid-L-arginine-4E,6E-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid-D-isoglutamic acid-N-methyldehydroalanine;cyclo(D-Ala-L-Leu-D-MeAsp-L-Arg-Adda-D-Glu-Mdha);microcystin–leucine–arginine;microcystin leucine-arginine;microcystin-leucine arginine;(5R,8S,11R,12S,15S,18S,19S,22R)-15-[3-(diaminomethylideneamino)propyl]-18-[(1E,3E,5S,6S)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dienyl]-1,5,12,19-tetramethyl-2-methylidene-8-(2-methylpropyl)-3,6,9,13,16,20,25-heptaoxo-1,4,7,10,14,17,21-heptazacyclopentacosane-11,22-dicarboxylic acid
微囊藻毒素(LR亚型)化学式
CAS
101043-37-2
化学式
C49H74N10O12
mdl
——
分子量
995.186
InChiKey
ZYZCGGRZINLQBL-GWRQVWKTSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 密度:
    1.29±0.1 g/cm3(Predicted)
  • 闪点:
    11 °C
  • 溶解度:
    乙醇:1 mg/mL
  • 颜色/状态:
    Solid, clear film
  • 解离常数:
    pKa1 2.09; pKa2 = 2.19; pKa3 = 12.48
  • 稳定性/保质期:
    在常温常压下稳定,应避免与强氧化剂接触。

计算性质

  • 辛醇/水分配系数(LogP):
    2.3
  • 重原子数:
    71
  • 可旋转键数:
    15
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.55
  • 拓扑面积:
    343
  • 氢给体数:
    10
  • 氢受体数:
    13

ADMET

代谢
微囊藻素(MC)-LR-GSH、MC-LR-Cys和MC-LR在太湖杂食性鱼类的组织分布进行了研究。MC-LR和MC-LR-Cys在肝脏、肾脏和肌肉中被检测到。肝脏和肾脏中MC-LR的浓度分别为0.052微克/克干重和0.067微克/克干重。MC-LR-Cys似乎是一个重要的代谢物,肝脏和肾脏的平均含量分别为1.104微克/克干重和0.724微克/克干重,肝脏和肾脏中MC-LR-Cys/MC-LR的比例高达21.4和10.8。肝脏中MC-LR-Cys/MC-LR比例较高,以及MC-LR-Cys与MC-LR浓度之间存在显著相关性,这表明对于杂食性鱼类来说,肝脏在通过形成MC-LR-Cys来解毒MC-LR方面更为活跃。此外,肾脏中MC-LR-Cys的积累和排泄/代谢之间可能存在一种平衡。MC-LR-Cys可以直接在肾脏形成,或者从肝脏或其他组织转运而来,而肾脏中的MC-LR-Cys可能会解离为MC-LR或被排出。尽管在肌肉中很少检测到MC-LR及其代谢物,但有必要研究食用肌肉中有毒代谢物的分布。
Tissue distribution of microcystin (MC)-LR-GSH, MC-LR-Cys and MC-LR of omnivorous fish in Lake Taihu was investigated. MC-LR and MC-LR-Cys were detected in liver, kidney and muscle. The concentration of MC-LR in liver and kidney was 0.052 ug g-1 DW and 0.067 ug g-1 DW, respectively. MC-LR-Cys appeared to be an important metabolite with average contents of 1.104 ug g-1 DW and 0.724 ug g-1 DW in liver and kidney, and the MC-LR-Cys/MC-LR ratio in liver and kidney reaching as high as 21.4 and 10.8. High MC-LR-Cys/MC-LR ratio and a significant correlation between MC-LR-Cys and MC-LR concentration in liver, suggest that liver is more active in detoxification of MC-LR by formation of MC-LR-Cys for omnivorous fish. Furthermore, there might be a balance between the accumulation and depuration/metabolism of MC-LR-Cys in kidney. The MC-LR-Cys can be formed in kidney directly, or transported from liver or other tissues, while the MC-LR-Cys in kidney might be dissociated to MC-LR or excreted. Although MC-LR and its metabolites were scarcely detected in muscle, it is necessary to investigate the distribution of toxic metabolites in edible muscle.
来源:Hazardous Substances Data Bank (HSDB)
代谢
肝脏在微囊藻毒素的解毒过程中扮演着重要角色。在尿液、粪便和肝细胞溶质组分中观察到了解毒产物,但这些产物的结构尚未被鉴定。微囊藻毒素-LR的解毒产物比母体毒素更具水溶性。
The liver plays a large role in the detoxification of microcystins. Detoxification products were seen in urine, feces, and liver cytosolic fractions, but these products have not been structurally identified. The detoxification products of microcystin-LR are more water soluble than the parent toxin.
来源:Hazardous Substances Data Bank (HSDB)
代谢
谷胱甘肽(GSH)在抗氧化防御和对微囊藻毒素-LR(MC-LR)的解毒代谢中发挥关键作用。然而,哺乳动物中MC-LR的解毒过程仍然在很大程度上是未知的。本文首次定量分析了SD大鼠在MC-LR暴露后肝脏中MC-LR及其GSH途径代谢物(MC-LR-GSH和MC-LR-Cys)的变化。在大鼠接受0.25和0.5半数致死量(LD50)的MC-LR腹腔注射(i.p.)之前,用或不用GSH合成的抑制剂丁硫氨酸-(S,R)-亚磺酰亚胺(BSO)预处理。实验期间,MC-LR-GSH的含量相对较低;然而,在0.5 LD50组中,MC-LR-Cys与MC-LR的比例高达6.65。这些结果表明,MC-LR-GSH可以有效地转化为MC-LR-Cys,这一代谢规律与之前报道的水生动物的数据一致。BSO+MC-LR处理组的MC-LR含量远高于单一MC-LR处理组。此外,BSO预处理后,MC-LR-Cys与MC-LR的比例显著降低,表明BSO诱导的GSH耗竭减少了MCs的解毒。此外,MC-LR显著诱导了肝脏损伤,BSO预处理组的效果更为明显。总之,本研究验证了GSH在MC-LR解毒中的作用,并进一步了解了SD大鼠对抗有毒蓝藻的生化机制。
Glutathione (GSH) plays crucial roles in antioxidant defense and detoxification metabolism of microcystin-LR (MC-LR). However, the detoxification process of MC-LR in mammals remains largely unknown. This paper, for the first time, quantitatively analyzes MC-LR and its GSH pathway metabolites (MC-LR-GSH and MC-LR-Cys) in the liver of Sprague-Dawley (SD) rat after MC-LR exposure. Rats received intraperitoneal (i.p.) injection of 0.25 and 0.5 lethal dose 50 (LD50) of MC-LR with or without pretreatment of buthionine-(S,R)-sulfoximine (BSO), an inhibitor of GSH synthesis. The contents of MC-LR-GSH were relatively low during the experiment; however, the ratio of MC-LR-Cys to MC-LR reached as high as 6.65 in 0.5 LD50 group. These results demonstrated that MC-LR-GSH could be converted to MC-LR-Cys efficiently, and this metabolic rule was in agreement with the data of aquatic animals previously reported. MC-LR contents were much higher in BSO+MC-LR-treated groups than in the single MC-LR-treated groups. Moreover, the ratio of MC-LR-Cys to MC-LR decreased significantly after BSO pretreatment, suggesting that the depletion of GSH induced by BSO reduced the detoxification of MCs. Moreover, MC-LR remarkably induced liver damage, and the effects were more pronounced in BSO pretreatment groups. In conclusion, this study verifies the role of GSH in the detoxification of MC-LR and furthers our understanding of the biochemical mechanism for SD rats to counteract toxic cyanobacteria.
来源:Hazardous Substances Data Bank (HSDB)
代谢
在当前工作中,已经扩展了关于人类MC代谢的现有信息,并在人类肝脏细胞溶质中确认了人类GST与MC-LR结合的能力。在生理GSH含量下,自发性反应占主导地位,而在GSH耗尽后,酶促反应占主导地位;这种转变在较高的GSH水平下是可以检测到的,MC浓度越低,这种转变越明显。然而,在低MC-LR浓度(=10 uM)下,代表反复口服暴露的情况下,酶促反应的重要性在GSH浓度在1到2 mM之间时变得占主导地位。MC-LR结合物在=0.5 mM GSH时可以被检测到,而对于10 uM MC-RR,在0.05 mM GSH时就可以观察到可检测水平的结合物,这个浓度比MC-LR低10倍。总的来说,我们的数据表明,MC-RR比MC-LR更有效地结合,尤其是在低浓度下。使用大鼠和小鼠的细胞溶质样本对MC-LR和MC-RR的GSH结合进行了表征,并检查了可能的物种差异。在生理GSH含量下,两种啮齿动物物种的酶促反应占总结合物形成的一半,与人类相比,减少了自发性反应的影响。大鼠和小鼠的GST显示出与人类的MC-LR和-RR GSH结合相似,但催化效率比人类样本高两倍。这主要是由于对底物的亲和力更高,动物模型中的Kmapp值比人类肝脏细胞溶质低一个数量级。与人类相比,两种变异体在啮齿动物中的代谢差异更为显著。
The accepted pathway for MC biotransformation is GSH conjugation, occurring either spontaneously or catalyzed by GST. In the present work, the already available information on human MC metabolism have been expanded and the capacity of human GST to conjugate MC-LR has been confirmed in human liver cytosol. At physiological GSH content the spontaneous reaction predominated on the enzymatic one; the prevalence of the enzymatic reaction occurred following GSH depletion, and the shift was detectable at higher GSH levels, the lower was MC concentration. However, at low MC-LR concentrations (=10 uM), representative of repeated oral exposure, the relevance of the enzymatic reaction became predominant at GSH concentration between 1 and 2 mM. MC-LR conjugate was detectable at =0.5 mM GSH, whereas, with 10 uM MC-RR detectable levels of conjugate were observed at 0.05mM GSH, a 10-fold lower concentration. Overall, our data indicate that MC-RR is more efficiently conjugated than MC-LR, especially at low concentrations. Cytosol samples from rat and mouse were used to characterize GSH conjugation of MC-LR and MC-RR, and to check for possible species differences. At physiological GSH content, in both rodent species the enzymatic reaction accounted for half of the total conjugate formation, reducing the impact of spontaneous reaction with respect to human. Rat and mouse GST showed similar MC-LR and-RR GSH conjugation, but a two-fold higher catalytic efficiency than human sample. This is mainly due to higher affinity for the substrate, with Kmapp values being an order of magnitude lower in the animal models than in human liver cytosol. More pronounced differences in the metabolism of the two variants were evidenced in rodents than in humans.
来源:Hazardous Substances Data Bank (HSDB)
代谢
微囊藻毒素极其稳定,能够抵抗在大多数自然水体中发现的常见化学分解,如水解或氧化。这些毒素在高温(40°C或104°F)以及在非常低的(<1)或高的(>9)pH值下会缓慢分解。在pH为1和40°C的条件下,毒素降解一半所需的时间(半衰期)为3周;在典型的环境条件下,半衰期为10周。
Microcystins are extremely stable and resist common chemical breakdown such as hydrolysis or oxidation under conditions found in most natural water bodies. These toxins can break down slowly at high temperature (40 C or 104 F ) at either very low (<1) or high (>9) pH. The half-life, the time it takes for one-half of the toxin to degrade, at pH 1 and 40 oC is 3 weeks; at typical ambient conditions half-life is 10 weeks.
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 毒性总结
识别和使用:微囊藻素-LR(MCLR)是最受研究的蓝藻肽毒素,因为它经常出现在河流和湖泊中的蓝藻水华中。蓝藻毒素根据它们如何影响人体进行分类:肝毒素影响肝脏,由一些微囊藻、念珠藻和颤藻的菌株产生。它们由环状六肽组成,称为微囊藻素和结节素,是环状五肽。人体研究:通过接触受污染的水进行娱乐活动,微囊藻、念珠藻和其他蓝藻的水华与许多国家的人类疾病发生有关。在加拿大,萨斯喀彻温省报告了人类疾病,症状包括胃痛、呕吐、腹泻、发热、头痛、肌肉和关节疼痛以及虚弱。其他国家也报告了类似的症状,以及由于水中蓝藻毒素引起的皮肤、眼睛和喉咙刺激和过敏反应。在巴西卡鲁阿鲁的一个透析中心发生了一次急性肝衰竭的爆发。在该诊所,1996年2月13日至20日进行常规血液透析治疗后,131名患者中有116名(89%)出现了视觉障碍、恶心和呕吐。随后,100名患者出现了急性肝衰竭,其中许多人死亡。从肝脏浓度和暴露体积来看,估计透析治疗用水中的微囊藻素含量为19.5微克/升。MCLR在人类淋巴母细胞系中具有裂解作用。对HepG2细胞中微核含量的分析表明,MCLR可诱导染色体断裂和丢失。MCLR在体外诱导了原代人肝细胞的死亡。动物研究:微囊藻素主要是肝毒素。通过静脉或腹腔注射微囊藻素急性暴露后,严重的肝损伤特征是肝细胞结构破坏(由于细胞骨架损伤)、窦状结构丧失、肝重增加由于肝内出血、血流动力学休克、心力衰竭和死亡。其他受影响的器官包括肾脏和肺以及肠道。MCLR诱导的肝毒性通过特异性抑制丝氨酸/苏氨酸蛋白磷酸酶1和2A发生,这导致许多细胞蛋白过度磷酸化。这最终导致细胞骨架损伤、细胞形态丧失和随之而来的细胞死亡。蛋白磷酸酶的抑制与MCLR潜在的肿瘤促进作用有关。它可以诱导过度的活性氧和氮物种的形成,导致DNA损伤。尽管MCLR不是细菌诱变剂,但在哺乳动物细胞中它可以诱导突变,主要是大片段缺失,并且具有裂解作用。MCLR还破坏有丝分裂纺锤体,干扰DNA损伤修复过程,导致遗传不稳定。此外,MCLR增加了早期反应基因的表达,包括原癌基因,以及参与DNA损伤和修复、细胞周期停滞和凋亡的基因。在大鼠中,口服暴露于MCLR对神经行为有不利影响,并在记忆相关的大脑区域引起炎症。MCLR在斑马鱼中诱导了发育中的神经毒性。在小鼠中,围产期暴露于MCLR干扰了后代前列腺的发育,表现为前列腺坏死、增生、炎症和纤维化。在斑马鱼中,暴露于MCLR会干扰甲状腺激素的稳态。MCLR在小鼠中显著损害了精子的生成,可能是通过影响下丘脑-垂体-性腺轴。MCLR穿过血睾屏障,干扰DNA损伤修复途径,并增加睾丸中原癌基因的表达。MCLR处理的小鼠在睾丸中通过改变抗氧化酶活性表现出氧化应激。生态毒理学研究:蓝藻水华可以显著改变两栖动物胚胎的正常发育。低浓度的溶解微囊藻素对水蚤没有有害影响。相反,检测到刺激作用。在较高剂量或较长时间暴露于微囊藻素时,对水蚤的影响是致命的。急性MCLR暴露可能干扰甲状腺激素代谢的稳态,导致幼年稀有鳡鱼出现甲状腺功能减退状态。在环境相关浓度的MCLR能够诱导对斑马鱼鱼类性腺发育的损害。在秀丽隐杆线虫中,MCLR对精子发生产生了不利影响。MCLR可能影响陆生植物幼苗的萌发和生长。
IDENTIFICATION AND USE: Microcystin-LR (MCLR) is the most investigated cyanobacterial peptide toxin because it is frequently present in cyanobacterial blooms in rivers and lakes. Cyanobacterial toxins are classified by how they affect the human body: Hepatotoxins affect the liver and are produced by some strains of Microcystis, Anabaena, and Oscillatoria. They consist of cyclic hetapepides, termed microcystins and nodularins, which are cyclic pentapeptides. HUMAN STUDIES: Through the recreational use of contaminated water, cyanobacterial blooms of Microcystis, Anabaena, and others have been linked to incidence of human illness in many countries. In Canada, human illnesses have been reported in Saskatchewan, with symptoms including stomach cramps, vomiting, diarrhea, fever, headache, pains in muscles and joints, and weakness. Similar symptoms as well as skin, eye, and throat irritation and allergic responses to cyanobacterial toxins in water have also been reported in other countries. An outbreak of acute liver failure occurred at a dialysis center in Caruaru, Brazil. At the clinic, 116 (89%) of 131 patients experienced visual disturbances, nausea, and vomiting after routine hemodialysis treatment on 13-20 February 1996. Subsequently, 100 patients developed acute liver failure, and many of them died. From liver concentrations and exposure volumes, it was estimated that 19.5 ug/L microcystin was in the water used for dialysis treatments. MCLR had a clastogenic effect in human lymphoblastoid cell line. The analysis of the micronucleus content in HepG2 cells suggested that MCLR induces both chromosome breaks and loss. MCLR induced cell death in primary human hepatocytes in vitro. ANIMAL STUDIES: The microcystins are primarily hepatotoxins. After acute exposure by iv or ip injection of microcystin, severe liver damage is characterized by a disruption of liver cell structure (due to damage to the cytoskeleton), a loss of sinusoidal structure, increases in liver weight due to intrahepatic hemorrhage, hemodynamic shock, heart failure and death. Other organs affected are the kidneys and lungs and the intestines. MCLR-induced hepatotoxicity occurs through specific inhibition of serine/threonine protein phosphatases 1 and 2A, which leads to hyperphosphorylation of many cellular proteins. This eventually results in cytoskeletal damage, loss of cell morphology, and the consequent cell death. Inhibition of protein phosphatases is the main mechanism associated with the potential tumor-promoting activities of MCLR. It can induce excessive formation of reactive oxygen and nitrogen species, which results in DNA damage. Although MCLR is not a bacterial mutagen, in mammalian cells it can induce mutations, as predominantly large deletions, and it has clastogenic actions. MCLR also disrupts the mitotic spindle, and interferes with DNA damage repair processes, which contribute to genetic instability. Furthermore, MCLR increases expression of early response genes, including proto-oncogenes, and genes involved in responses to DNA damage and repair, cell-cycle arrest, and apoptosis. In rats oral exposure to MCLR had adverse affects on neurobehaviors, and induced inflammation in memory-related brain regions. MCLR induced developmental neurotoxicity in zebrafish. In mice, perinatal MCLR exposure interfered with the development of the prostate in the offspring, evidenced by prostatic necrosis, hyperplasia, inflammation, and fibrosis. Exposure to MCLR in zebrafish results in the disturbance of thyroid hormone homeostasis. MCLR significantly impaired the spermatogenesis in mice possibly through the effect on Hypothalamic-Pituitary-Gonadal Axis. MCLR crosses the blood-testis barrier and interferes with DNA damage repair pathway and also increases expression of the proto-oncogenes in testis. MCLR treated mice exhibit oxidative stress in testis through the alteration of antioxidant enzyme activity. ECOTOXICITY STUDIES: Cyanobacterial water blooms can significantly alter the normal development of amphibian embryos. Low concentrations of dissolved microcystin had no harmful effect on Daphnia. On the contrary, stimulatory effects were detected. With microcystin given at a higher dosage or for a longer exposure, the effect on Daphnia magna was fatal. Acute MCLR exposure has the potential to disturb the homeostasis of thyroid hormone metabolism, leading to a hypothyroidism state in the juvenile Chinese rare minnow. MCLR at environmentally relevant concentrations is able to induce impairments on fish gonadal development in zebrafish. In C. elegans, MCLR induced adverse effects on spermiogenesis. MCLR could affect terrestrial plants seedling germination and growth.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
微囊毒素的作用部位是肝细胞,这是肝脏中最常见的细胞类型。它们通过破坏细胞骨架起作用,细胞骨架是一种适应性蛋白框架,它不断地塑造和重塑细胞,以响应环境。细胞死亡,这会破坏肝脏的细小血管,导致大量肝出血。 其分子靶标是一组称为蛋白磷酸酶的酶,它们在调节蛋白相互作用和活性方面发挥作用。非常明确的蛋白磷酸酶类型(1型和2A型)会被极低浓度的微囊毒素非常特异地抑制。这种酶从蛋白中去除磷酸,这是许多生化途径中的常见步骤。这种抑制,以及随后磷酸化蛋白的积累,被认为是微囊毒素破坏肝脏的机制之一。 微囊毒素还能激活磷酸化酶b,这在肝细胞的事务中起着非常重要的作用。这种抑制和激活的结合对细胞来说是迅速致命的。这些毒素中的一些特异性使它们成为有价值的 research 工具。
The site of action of microcystins is the hepatocyte, the commonest cell type in the liver. They act by disrupting the cytoskeleton, the adaptable protein framework that constantly shapes and reshapes the cell as it responds to the environment. The cells die and this destroys the finer blood vessels of the liver leading to massive hepatic bleeding. The molecular target are a group of enzymes called protein phosphatases that play a role in regulating protein interactions and activities. Very well-defined types of protein phosphatase (type 1 and type 2A) are inhibited very specifically by very low concentrations of microcystins. This enzyme removes phosphate from a protein, a common step in many biochemical pathways. This inhibition, with subsequent build up of phosphorylated proteins, is believed to be a mechanism by which microcystins destroy livers. Microcystins also activate the enzyme phosphorylase b, which plays a very important role in the affairs of the hepatocyte. The combination of inhibition and activation is rapidly lethal to the cell. The specificity of some of these toxins makes them valuable research tools.
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 致癌性证据
评估:对于微囊藻毒素-LR对人类致癌性的证据不足...对于微囊藻毒素-LR在实验动物中的致癌性的证据不足。对于微囊藻提取物在实验动物中的致癌性的证据不足...总体评估:微囊藻毒素-LR可能对人类具有致癌性(2B组)。微囊藻提取物对其对人类致癌性的分类不足(3组)...
Evaluation: There is inadequate evidence in humans for the carcinogenicity of microcystin-LR ... There is inadequate evidence in experimental animals for the carcinogenicity of microcystin-LR. There is inadequate evidence in experimental animals for the carcinogenicity of Microcystis extracts ... Overall evaluation: Microcystin-LR is possibly carcinogenic to humans (Group 2B). Microcystis extracts are not classifiable as to their carcinogenicity to humans (Group 3) ...
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌物分类
国际癌症研究机构致癌物:微囊藻毒素-LR
IARC Carcinogenic Agent:Microcystin-LR
来源:International Agency for Research on Cancer (IARC)
毒理性
  • 致癌物分类
国际癌症研究机构(IARC)致癌物分类:2B组:可能对人类致癌
IARC Carcinogenic Classes:Group 2B: Possibly carcinogenic to humans
来源:International Agency for Research on Cancer (IARC)
吸收、分配和排泄
藻青菌毒素最可能的暴露途径是通过口服摄入。然而,尚未有关于口服给药微囊藻素的药代动力学研究。在大鼠和小鼠通过静脉或腹腔注射亚致死剂量的各种放射性标记毒素后,微囊藻素似乎是通过肠道和肝脏中的胆酸转运体进行运输的。大约70%的毒素迅速定位于肝脏。肾脏和肠道也积累了大量的微囊藻素-LR。微囊藻素-LR迅速排泄,总排泄量的75%在12小时内发生。给药剂量的剩余24%在6天后排出,其中约9%通过尿液途径,15%通过粪便途径缓慢排出(每天1%)。
The most likely route of exposure to cyanobacterial toxins is via oral ingestion. However, there have been no pharmacokinetic studies with orally administered microcystins. After intravenous or intraperitoneal injection of sublethal doses of variously radiolabelled toxins in mice and rats, microcystin appears to be transported by bile acids transporter in both the intestine and the liver. About 70% of the toxin is rapidly localized in the liver. The kidney and intestine also accumulate significant amounts of microcystin-LR. Microcystin-LR was excreted rapidly, with 75% of the total excretion occurring within 12 hours. The remaining 24% of the administered dose was excreted after 6 days, about 9% via the urinary route and 15% slowly (1% per day) via the fecal route.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
微囊藻素-LR不易穿过细胞膜,因此不会进入大多数组织。口服摄入后,它通过回肠进入血液,通过存在于肝细胞和小肠上皮细胞中的胆酸型转运体(多功能有机离子转运系统)进行转运,并因肝细胞的活动性摄取而在肝脏中浓缩。它与一种40 kdalton的蛋白质(蛋白磷酸酶2A和可能的蛋白磷酸酶1)在肝细胞胞质中通过共价键结合。一些其他微囊藻素同系物比微囊藻素-LR更具疏水性,可能会通过其他机制穿过细胞膜,包括扩散。
Microcystin-LR does not readily cross cell membranes, and hence does not enter most tissues. After oral uptake it is transported across the ileum into the bloodstream through a bile acid type transporter (the multispecific organic ion transport system) present in hepatocytes and cells lining the small intestine and is concentrated in the liver as a result of active uptake by hepatocytes. It is covalently bound to a 40 kdalton protein (protein phosphatase 2A and possibly protein phosphatase 1) in the hepatocyte cytosol. Some other microcystin congeners are more hydrophobic than microcystin-LR and may cross cell membranes by other mechanisms, including diffusion.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
血清样本使用酶联免疫吸附剂测定(ELISA)方法来检测自由的微囊藻毒素,以及使用气相色谱/质谱(GC/MS)来检测2-甲基-3-甲氧基-4-苯基丁酸(MMPB)。MMPB是通过化学氧化从自由和蛋白质结合的微囊藻毒素中衍生出来的,它似乎代表了血清中存在的总微囊藻毒素。... 在最后一次记录的暴露后超过50天,在患者血清中发现了自由微囊藻毒素的证据。自由微囊藻毒素的血清浓度始终低于MMPB对总微囊藻毒素的定量:ELISA测量的自由微囊藻毒素仅占GC/MS方法检测到的总微囊藻毒素浓度的8-51%。在静脉暴露事件后,我们发现人类血清中存在自由和蛋白质结合形式的微囊藻毒素的证据,尽管蛋白质结合形式的确切性质尚不确定。自由微囊藻毒素似乎是血清中存在的总微囊藻毒素的一个小但可变的子集... /微囊藻毒素/
... Serum samples /were analyzed/ using enzyme-linked immunosorbent assay (ELISA) methods to detect free microcystins, and gas chromatography/mass spectrometry (GC/MS) to detect 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB). MMPB is derived from both free and protein-bound microcystins by chemical oxidation, and it appears to represent total microcystins present in serum. ... Evidence of free microcystins /was found. in patient serum for more than 50 days after the last documented exposure. Serum concentrations of free microcystins were consistently lower than MMPB quantification of total microcystins: free microcystins as measured by ELISA were only 8-51% of total microcystin concentrations as detected by the GC/MS method. After intravenous exposure episodes, we found evidence of microcystins in human serum in free and protein-bound forms, though the nature of the protein-bound forms is uncertain. Free microcystins appear to be a small but variable subset of total microcystins present in human serum... /Microcystins/
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
(3H)微囊藻毒素-LR(亚致死静脉注射)在小鼠体内的分布、排泄和肝脏代谢被测量。血浆消除呈双指数,α相和β相的半衰期分别为0.8和6.9分钟。在60分钟时,肝脏含有剂量的67 +/- 4%。在整个6天的研究中,肝脏的放射性总量没有变化,而23.7 +/- 1.7%的剂量被排泄;其中9.2 +/- 1.0%通过尿液,14.5 +/- 1.1%通过粪便。注射后6小时和12小时,大约60%的尿液和粪便放射性标签是母体毒素。肝细胞溶质,其中含有70 +/- 2%的肝脏放射性标签(从1小时到6天),通过热变性、胃蛋白酶消化和C18 Sep Pak提取准备好高效液相色谱分析。在1小时时,35 +/- 2%的放射性标签不溶或与C18 Sep Pak结合;43 +/- 3%与保留时间(rt)6.6分钟的峰相关,16 +/- 3%与母体毒素(rt 9.4分钟)相关。6天后,8 +/- 1%是C18 Sep Pak结合或不溶的;5 +/- 0%出现在rt 6.6分钟,17 +/- 1%与母体毒素相关,60 +/- 2%与rt 8.1分钟相关。另外两个峰,rt 4.9和5.6分钟,短暂出现。通过对肝细胞溶质进行非变性条件和变性条件下的脱盐色谱分析,发现所有放射性标签都与细胞溶质组分相关,并且83 +/- 5%通过1天以共价键结合。到第6天,共价结合的同位素数量减少到42 +/- 11%。这是第一个描述微囊藻毒素长期在肝脏中保留的研究,并记录了可能的解毒产物。
The distribution, excretion and hepatic metabolism of (3H)microcystin-LR (sublethal iv) were measured in mice. Plasma elimination was biexponential with alpha- and beta-phase half-lives of 0.8 and 6.9 min, respectively. At 60 min, liver contained 67 +/- 4% of dose. Through the 6-day study the amount of hepatic radioactivity did not change whereas 23.7 +/- 1.7% of the dose was excreted; 9.2 +/- 1.0% in urine and 14.5 +/- 1.1% in feces. Approximately 60% of the urine and fecal radiolabel 6 and 12 hr postinjection was the parent toxin. Hepatic cytosol, which contained 70 +/- 2% of the hepatic radiolabel (1 hr through 6 days), was prepared for high-performance liquid chromatography analysis by heat denaturation, pronase digestion and C18 Sep Pak extraction. At 1 hr, 35 +/- 2% of the radiolabel was insoluble or C18 Sep Pak-bound; 43 +/- 3% was associated with a peak of retention time (rt) 6.6 min, and 16 +/- 3% with the parent toxin (rt 9.4 min). After 6 days, 8 +/- 1% was C18 Sep Pak-bound or insoluble; 5 +/- 0% occurred at rt 6.6 min, 17 +/- 1% with parent and 60 +/- 2% was associated with rt 8.1 min. Two other peaks, rt 4.9 and 5.6 min, appeared transiently. Analysis of hepatic cytosol by desalting chromatography under nondenaturing and denaturing conditions revealed that all of the radiolabel was associated with cytosolic components, and 83 +/- 5% was bound covalently through 1 day. By day 6 the amount of covalently bound isotope decreased to 42 +/- 11%. This is the first study to describe the long-term hepatic retention of microcystin toxin and documents putative detoxication products.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 危险品标志:
    T+
  • 安全说明:
    S16,S26,S36/37,S36/37/39,S45,S7
  • 危险类别码:
    R26/27/28,R36/37/38,R43
  • WGK Germany:
    2,3
  • 海关编码:
    30029090
  • 危险品运输编号:
    UN 2811 6.1/PG 1
  • RTECS号:
    GT2810000
  • 储存条件:
    密封保存,储存在阴凉干燥处。冷藏温度应保持在-20°C。

SDS

SDS:01829c2e3b9365a36580219a0d4aa526
查看

模块 1. 化学品
1.1 产品标识符
: 微囊藻毒素-LR 溶液
产品名称
1.2 鉴别的其他方法
无数据资料
1.3 有关的确定了的物质或混合物的用途和建议不适合的用途
仅用于研发。不作为药品、家庭或其它用途。

模块 2. 危险性概述
2.1 GHS-分类
易燃液体 (类别 2)
14.6 对使用者的特别提醒
无数据资料
急性毒性, 经口 (类别 3)
急性毒性, 吸入 (类别 3)
急性毒性, 经皮 (类别 3)
皮肤刺激 (类别 2)
眼睛刺激 (类别 2A)
特异性靶器官系统毒性(一次接触) (类别 1)
2.2 GHS 标记要素,包括预防性的陈述
象形图
警示词 危险
危险申明
H225 高度易燃液体和蒸气
H301 吞咽会中毒
H311 皮肤接触会中毒
H315 造成皮肤刺激。
H319 造成严重眼刺激。
H331 吸入会中毒。
H370 对器官造成损害。
警告申明
预防措施
P210 远离热源、火花、明火和热表面。- 禁止吸烟。
P233 保持容器密闭。
P240 容器和接收设备接地。
P241 使用防爆的电气/ 通风/ 照明 设备。
P242 只能使用不产生火花的工具。
P243 采取措施,防止静电放电。
P260 不要吸入粉尘/ 烟/ 气体/ 烟雾/ 蒸汽/ 喷雾。
P264 操作后彻底清洁皮肤。
P270 使用本产品时不要进食、饮水或吸烟。
P271 只能在室外或通风良好之处使用。
P280 戴防护手套/穿防护服/戴护目镜/戴面罩.
事故响应
P301 + P310 如果吞下去了: 立即呼救解毒中心或医生。
P303 + P361 + P353 如果皮肤(或头发)接触:立即除去/脱掉所有沾污的衣物,用水清洗皮肤/淋
浴。
P304 + P340 如吸入: 将患者移到新鲜空气处休息,并保持呼吸舒畅的姿势。
P305 + P351 + P338 如与眼睛接触,用水缓慢温和地冲洗几分钟。如戴隐形眼镜并可方便地取
出,取出隐形眼镜,然后继续冲洗.
P307 + P311 如接触到:呼叫解毒中心或医生。
P322 具体处置(见本标签上提供的急救指导)。
P330 漱口。
P332 + P313 如觉皮肤刺激:求医/就诊。
P337 + P313 如仍觉眼睛刺激:求医/就诊。
P361 立即除去/脱掉所有沾污的衣物。
P370 + P378 火灾时: 用干的砂子,干的化学品或耐醇性的泡沫来灭火。
安全储存
P403 + P233 存放于通风良的地方。 保持容器密闭。
P403 + P235 保持低温,存放于通风良好处。
P405 存放处须加锁。
废弃处置
P501 将内容物/ 容器处理到得到批准的废物处理厂。
2.3 其它危害物 - 无

模块 3. 成分/组成信息
3.2 混合物
: C49H74N10O12
分子式
: 995.17 g/mol
分子量
组分 分类 浓度或浓度范围
Methanol
<=100%
化学文摘登记号(CA 67-56-1 Flam. Liq. 2; Acute Tox. 3;
S No.) 200-659-6 STOT SE 1; H225, H301,
EC-编号 603-001-00-X H311, H331, H370
索引编号 01-2119433307-44-XXXX
注册号
如需在本章节中提及的H类告知和R类描述的全部文字说明,请见第16章节.

模块 4. 急救措施
4.1 必要的急救措施描述
一般的建议
请教医生。 向到现场的医生出示此安全技术说明书。
吸入
如果吸入,请将患者移到新鲜空气处。 如呼吸停止,进行人工呼吸。 请教医生。
皮肤接触
用肥皂和大量的水冲洗。 立即将患者送往医院。 请教医生。
眼睛接触
用大量水彻底冲洗至少15分钟并请教医生。
食入
禁止催吐。 切勿给失去知觉者通过口喂任何东西。 用水漱口。 请教医生。
4.2 主要症状和影响,急性和迟发效应
如吞服甲醇可能致命或致盲。, 不能制成无毒性的。, 摄入的影响可包括:, 恶心, 头痛, 呕吐, 消化系统失调,
头晕, 虚弱, 混乱, 嗜睡, 失去知觉, 据我们所知,此化学,物理和毒性性质尚未经完整的研究。
4.3 及时的医疗处理和所需的特殊处理的说明和指示
无数据资料

模块 5. 消防措施
5.1 灭火介质
灭火方法及灭火剂
用水雾,抗乙醇泡沫,干粉或二氧化碳灭火。
5.2 源于此物质或混合物的特别的危害
碳氧化物
碳氧化物
5.3 给消防员的建议
如必要的话,戴自给式呼吸器去救火。
5.4 进一步信息
用水喷雾冷却未打开的容器。

模块 6. 泄露应急处理
6.1 作业人员防护措施、防护装备和应急处置程序
戴呼吸罩。 避免吸入蒸气、烟雾或气体。 保证充分的通风。 移去所有火源。 人员疏散到安全区域。
谨防蒸气积累达到可爆炸的浓度。蒸气能在低洼处积聚。
6.2 环境保护措施
如能确保安全,可采取措施防止进一步的泄漏或溢出。 不要让产品进入下水道。
6.3 泄漏化学品的收容、清除方法及所使用的处置材料
围堵溢出,用防电真空清洁器或湿刷子将溢出物收集起来,并放置到容器中去,根据当地规定处理(见第13部
分)。
6.4 参考其他部分
丢弃处理请参阅第13节。

模块 7. 操作处置与储存
7.1 安全操作的注意事项
避免接触皮肤和眼睛。 避免吸入蒸气和烟雾。
切勿靠近火源。-严禁烟火。采取措施防止静电积聚。
7.2 安全储存的条件,包括任何不兼容性
贮存在阴凉处。 使容器保持密闭,储存在干燥通风处。
打开了的容器必须仔细重新封口并保持竖放位置以防止泄漏。
建议的贮存温度: -20 °C
7.3 特定用途
无数据资料

模块 8. 接触控制和个体防护
8.1 容许浓度
最高容许浓度
组分 化学文摘登 值 容许浓度 基准
记号(CAS
No.)
Methanol 67-56-1 PC- 25 mg/m3 工作场所有害因素职业接触限值 -
TWA 化学有害因素
备注 皮
PC- 50 mg/m3 工作场所有害因素职业接触限值 -
STEL 化学有害因素

8.2 暴露控制
适当的技术控制
避免与皮肤、眼睛和衣服接触。 休息前和操作本品后立即洗手。
个体防护设备
眼/面保护
面罩與安全眼鏡请使用经官方标准如NIOSH (美国) 或 EN 166(欧盟) 检测与批准的设备防护眼部。
皮肤保护
戴手套取 手套在使用前必须受检查。
请使用合适的方法脱除手套(不要接触手套外部表面),避免任何皮肤部位接触此产品.
使用后请将被污染过的手套根据相关法律法规和有效的实验室规章程序谨慎处理. 请清洗并吹干双手
所选择的保护手套必须符合EU的89/686/EEC规定和从它衍生出来的EN 376标准。
完全接触
物料: 丁基橡胶
最小的层厚度 0.3 mm
溶剂渗透时间: 480 min
测试过的物质Butoject® (KCL 897 / Z677647, 规格 M)
飞溅保护
物料: 丁腈橡胶
最小的层厚度 0.4 mm
溶剂渗透时间: 30 min
测试过的物质Camatril® (KCL 730 / Z677442, 规格 M)
, 测试方法 EN374
如果以溶剂形式应用或与其它物质混合应用,或在不同于EN
374规定的条件下应用,请与EC批准的手套的供应商联系。
这个推荐只是建议性的,并且务必让熟悉我们客户计划使用的特定情况的工业卫生学专家评估确认才可.
这不应该解释为在提供对任何特定使用情况方法的批准.
身体保护
全套防化学试剂工作服, 阻燃防静电防护服,
防护设备的类型必须根据特定工作场所中的危险物的浓度和数量来选择。
呼吸系统防护
如危险性评测显示需要使用空气净化的防毒面具,请使用全面罩式多功能防毒面具(US)或AXBEK
型(EN
14387)防毒面具筒作为工程控制的候补。如果防毒面具是保护的唯一方式,则使用全面罩式送风防
毒面具。 呼吸器使用经过测试并通过政府标准如NIOSH(US)或CEN(EU)的呼吸器和零件。

模块 9. 理化特性
9.1 基本的理化特性的信息
a) 外观与性状
形状: 液体
颜色: 无色
b) 气味
无数据资料
c) 气味阈值
无数据资料
d) pH值
无数据资料
e) 熔点/凝固点
-98 °C
f) 沸点、初沸点和沸程
64 - 65 °C 在 1,013 hPa
g) 闪点
11 °C - 闭杯
h) 蒸发速率
无数据资料
i) 易燃性(固体,气体)
无数据资料
j) 高的/低的燃烧性或爆炸性限度 爆炸上限: 36 %(V)
爆炸下限: 6 %(V)
k) 蒸气压
130.23 hPa 在 20 °C
547 hPa 在 50 °C
l) 蒸汽密度
0.791.1
m) 密度/相对密度
0.791 g/cm3
n) 水溶性
完全混溶
o) n-辛醇/水分配系数
无数据资料
p) 自燃温度
无数据资料
q) 分解温度
无数据资料
r) 粘度
无数据资料

模块 10. 稳定性和反应活性
10.1 反应性
无数据资料
10.2 稳定性
无数据资料
10.3 危险反应
无数据资料
10.4 应避免的条件
热,火焰和火花。 极端温度和直接日晒。
10.5 不相容的物质
酸, 酰基氯, 酸酐, 氧化剂, 碱金属
10.6 危险的分解产物
其它分解产物 - 无数据资料

模块 11. 毒理学资料
11.1 毒理学影响的信息
急性毒性
无数据资料
皮肤刺激或腐蚀
无数据资料
眼睛刺激或腐蚀
无数据资料
呼吸道或皮肤过敏
无数据资料
生殖细胞致突变性
无数据资料
致癌性
IARC:
此产品中没有大于或等于 0。1%含量的组分被 IARC鉴别为可能的或肯定的人类致癌物。
生殖毒性
无数据资料
特异性靶器官系统毒性(一次接触)
无数据资料
特异性靶器官系统毒性(反复接触)
无数据资料
吸入危险
无数据资料
潜在的健康影响
吸入 吸入会中毒。 引起呼吸道刺激。
摄入 误吞会中毒。
皮肤 如果被皮肤吸收会有毒性 造成皮肤刺激。
眼睛 造成严重眼刺激。
接触后的征兆和症状
如吞服甲醇可能致命或致盲。, 不能制成无毒性的。, 摄入的影响可包括:, 恶心, 头痛, 呕吐, 消化系统失调,
头晕, 虚弱, 混乱, 嗜睡, 失去知觉, 据我们所知,此化学,物理和毒性性质尚未经完整的研究。
附加说明
化学物质毒性作用登记: 无数据资料

模块 12. 生态学资料
12.1 生态毒性
对鱼类的毒性 半数致死浓度(LC50) - 虹鳟 (红鳟鱼) - 19,000 mg/l - 96 h
对水蚤和其他水生无脊 半数效应浓度(EC50) - 大型蚤 (水蚤) - 24,500 mg/l - 48 h
椎动物的毒性
100% 效应浓度(EC100) - 大型蚤 (水蚤) - 10,000 mg/l - 24 h
12.2 持久性和降解性
无数据资料
12.3 潜在的生物累积性
无数据资料
12.4 土壤中的迁移性
无数据资料
12.5 PBT 和 vPvB的结果评价
无数据资料
12.6 其它不良影响
无数据资料

模块 13. 废弃处置
13.1 废物处理方法
产品
在装备有加力燃烧室和洗刷设备的化学焚烧炉内燃烧处理,特别在点燃的时候要注意,因为此物质是高度易燃
性物质 将剩余的和不可回收的溶液交给有许可证的公司处理。
受污染的容器和包装
按未用产品处置。

模块 14. 运输信息
14.1 联合国危险货物编号
欧洲陆运危规: 1230 国际海运危规: 1230 国际空运危规: 1230
14.2 联合国运输名称
欧洲陆运危规: METHANOL, 溶液
国际海运危规: METHANOL, 溶液
国际空运危规: Methanol, 溶液
14.3 运输危险类别
欧洲陆运危规: 3 (6.1) 国际海运危规: 3 (6.1) 国际空运危规: 3 (6.1)
14.4 包裹组
欧洲陆运危规: II 国际海运危规: II 国际空运危规: II
14.5 环境危险
欧洲陆运危规: 否 国际海运危规 国际空运危规: 否
海洋污染物(是/否): 否


模块 15 - 法规信息
N/A


模块16 - 其他信息
N/A


制备方法与用途

类别:有毒物质

毒性分级:剧毒

急性毒性:

  • 口服-小鼠 LD50: 5 毫克/公斤

可燃性危险特性:

  • 可燃;火场分解产生有毒氮氧化物烟雾

储运特性:

  • 库房低温、通风、干燥
  • 与食品原料分开存放

灭火剂:

  • 水、二氧化碳、干粉、砂土

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    微囊藻毒素(LR亚型) 以 phosphate buffer 为溶剂, 反应 1.5h, 生成 [4(Z)-Adda5]microcystin-LR
    参考文献:
    名称:
    A Photodetoxification Mechanism of the Cyanobacterial Hepatotoxin Microcystin-LR by Ultraviolet Irradiation
    摘要:
    When microcystin-LR was exposed to UV, three major nontoxic compounds were formed. These compounds were identified as [4(E),6(Z)-Adda(5)] and [4(Z),6(E)-Adda(5)]microcystin-LR, which are geometrical isomers of the Adda [3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-4(E),6(E)-decadienoic acid] moiety of microcystin-LR, and a novel compound, tricyclo-Adda [(2S,3S,1'R,3'S,4'S,5'R,6'R,7'R)-3-amino-5-(4',6'-dimethyl-3'-methoxytricyclo[5.4.0.0(1',5')]undeca-8',10'-dien-6'-yl)-2-methyl-4(E)-pentenoic acid]-containing microcystin-LR ([tricyclo-Adda(5)]microcystin-LR), which was formed by [2 + 2] addition between the benzene ring and the double bond at position 6-7 of the Adda moiety of the microcystin. The geometrical isomers were formed reversibly, and their equilibrium constants were almost the same. [Tricyclo-Adda(5)]microcystin-LR was also formed reversibly and was decomposed under UV light. These results suggest that the breakdown of microcystin-LR by UV irradiation proceeds via [tricyclo-Adda(5)]microcystin-LR.
    DOI:
    10.1021/tx970132e
  • 作为产物:
    描述:
    [6(Z)-Adda5]microcystin-LR 以 phosphate buffer 为溶剂, 反应 0.5h, 生成 微囊藻毒素(LR亚型)
    参考文献:
    名称:
    A Photodetoxification Mechanism of the Cyanobacterial Hepatotoxin Microcystin-LR by Ultraviolet Irradiation
    摘要:
    When microcystin-LR was exposed to UV, three major nontoxic compounds were formed. These compounds were identified as [4(E),6(Z)-Adda(5)] and [4(Z),6(E)-Adda(5)]microcystin-LR, which are geometrical isomers of the Adda [3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-4(E),6(E)-decadienoic acid] moiety of microcystin-LR, and a novel compound, tricyclo-Adda [(2S,3S,1'R,3'S,4'S,5'R,6'R,7'R)-3-amino-5-(4',6'-dimethyl-3'-methoxytricyclo[5.4.0.0(1',5')]undeca-8',10'-dien-6'-yl)-2-methyl-4(E)-pentenoic acid]-containing microcystin-LR ([tricyclo-Adda(5)]microcystin-LR), which was formed by [2 + 2] addition between the benzene ring and the double bond at position 6-7 of the Adda moiety of the microcystin. The geometrical isomers were formed reversibly, and their equilibrium constants were almost the same. [Tricyclo-Adda(5)]microcystin-LR was also formed reversibly and was decomposed under UV light. These results suggest that the breakdown of microcystin-LR by UV irradiation proceeds via [tricyclo-Adda(5)]microcystin-LR.
    DOI:
    10.1021/tx970132e
点击查看最新优质反应信息

文献信息

  • Exploring the Reactivity of Multicomponent Photocatalysts: Insight into the Complex Valence Band of BiOBr
    作者:Yan-Fen Fang、Wan-Hong Ma、Ying-Ping Huang、Gen-Wei Cheng
    DOI:10.1002/chem.201202602
    日期:2013.2.25
    The band structure of multicomponent semiconductor photocatalysts, as well as their reactivity distinction under different wavelengths of light, is still unclear. BiOBr, which is a typical multicomponent semiconductor, may have two possible valenceband structures, that is, two discrete valence bands constructed respectively from O 2p and Br 4p orbitals, or one valence band derived from the hybridization
    尚不清楚多组分半导体光催化剂的能带结构以及它们在不同波长的光下的反应性区别。BiOBr是一种典型的多组分半导体,可能具有两个可能的价带结构,即分别由O 2p和Br 4p轨道构成的两个离散价带,或一个由这些轨道的杂交衍生的价带。在这项工作中,将水性光催化羟基化用作探针反应,以研究BiOBr中光生空穴的性质和反应。选择了三种具有不同氧化电位的有机化合物(微囊藻毒素-LR,苯胺和苯甲酸)作为底物。同位素标记(H 2 18用O作为溶剂)来确定产物羟基中O原子的来源,从而区分了不同羟基化途径的贡献。此外,用于定量活性氧物质的旋涂捕集ESR法(。 OH和。 OOH)形成在反应体系中。所形成的产物的羟基O原子的同位素丰度不同,以及的反向趋势。OH / 。OOH比与基材在紫外线和可见光照射下的抗氧化性之间的关系表明,BiOBr具有两个独立的价带,这些价带具有不同的氧化能力,分别响应于紫外线和可见光。这项研
  • A hybrid adsorbent/visible light photocatalyst for the abatement of microcystin-LR in water
    作者:M. Długosz、A. Kwiecień、P. Żmudzki、B. Bober、J. Krzek、J. Bialczyk、M. Nowakowska、K. Szczubiałka
    DOI:10.1039/c5cc01520k
    日期:——

    A hybrid adsorbent/photocatalyst was obtained and used for the removal of microcystin-LR, a potent toxin, from water via adsorption and photocatalyzed oxidation with singlet oxygen.

    获得了一种混合吸附剂/光催化剂,并用于通过吸附和单线态氧的光催化氧化从水中去除微囊藻毒素-LR,这是一种强效毒素。
  • Mechanistic Study and the Influence of Oxygen on the Photosensitized Transformations of Microcystins (Cyanotoxins)
    作者:Weihua Song、Sabrina Bardowell、Kevin E. O'Shea
    DOI:10.1021/es063066o
    日期:2007.8.1
    Microcystins (MCs) produced by cyanobacteria are strong hepatotoxins and classified as possible carcinogens. MCs pose a considerable threat to consumers of tainted drinking and surface waters, but the photochemical fate of dissolved MCs in the environment has received limited attention. MCs are released into the environment upon cell lysis along with photoactive pigments including phycocyanin and chlorophyll a. The concentrations of MCs and pigments are expected to be greatest during a bloom event. These blooms occur in sunlit surface water and thus MCs can undergo a variety of solar initiated or photosensitized transformations. We report herein the role of oxygen, sensitizer, and light on the photochemical fate of MCs. The phycocyanin photosensitized transformation of MCs is elucidated, and photosensitized isomerization plays an important role in the process. The UV-A portion of sunlight was simulated using 350 nm light and the phototransformations of three MC variants (-LR, -RR, -LF) were investigated. Singlet oxygen leads to photooxidation of phycocyanin, the predominant pigment of cyanobacteria, hence, reducing the phototransformation rate of MCs. The phototransformation rate of MC-LR increases as pH decreases. The pH effect may be the result of MCs association with phycocyanin. Our results indicate photosensitized processes may play a key role in the photochemical transformation of MCs in the natural water.
  • Structures of three new cyclic heptapeptide hepatotoxins produced by the cyanobacterium (blue-green alga) Nostoc sp. strain 152
    作者:Michio Namikoshi、Kenneth L. Rinehart、Ryuichi Sakai、Kaarina Sivonen、Wayne W. Carmichael
    DOI:10.1021/jo00312a019
    日期:1990.12
  • Mehrotra, Amit P.; Webster, Kerri L.; Gani, David, Journal of the Chemical Society. Perkin transactions I, 1997, # 17, p. 2495 - 2511
    作者:Mehrotra, Amit P.、Webster, Kerri L.、Gani, David
    DOI:——
    日期:——
查看更多

同类化合物

(-)-N-[(2S,3R)-3-氨基-2-羟基-4-苯基丁酰基]-L-亮氨酸甲酯 鹅肌肽硝酸盐 非诺贝特杂质C 霜霉灭 阿洛西克 阿沙克肽 阿拉泊韦 门冬氨酸缩合物 铬酸酯(1-),二[3-[(4,5-二氢-3-甲基-5-羰基-1-苯基-1H-吡唑-4-基)偶氮]-4-羟基-N-苯基苯磺酰氨酸根(2-)]-,钠 钠(6S,7S)-3-(乙酰氧基甲基)-8-氧代-7-[(1H-四唑-1-基乙酰基)氨基]-5-硫杂-1-氮杂双环[4.2.0]辛-2-烯-2-羧酸酯 金刚西林 醋酸胃酶抑素 酪蛋白 酪氨酰-脯氨酰-N-甲基苯丙氨酰-脯氨酰胺 透肽菌素A 连氮丝菌素 远霉素 达福普丁甲磺酸复合物 达帕托霉素 辛基[(3S,6S,9S,12S,15S,21S,24S,27R,33aS)-12,15-二[(2S)-丁烷-2-基]-24-(4-甲氧苄基)-2,8,11,14,20,27-六甲基-1,4,7,10,13,16,19,22,25,28-十羰基-3,6,21-三(丙烷-2-基)三十二氢吡啶并[1,2-d][1,4,7,10,13,16,19,22,25,28]氧杂九氮杂环三十碳十五烯并 谷胱甘肽磺酸酯 谷氨酰-天冬氨酸 表面活性肽 葫芦脲 水合物 葫芦[7]脲 葚孢霉酯I 荧光减除剂(OBA) 苯甲基3-氨基-3-脱氧-α-D-吡喃甘露糖苷盐酸 苯唑西林钠单水合物 苯乙胺,b-氟-a,b-二苯基- 苯乙胺,4-硝基-,共轭单酸(9CI) 苯丙氨酰-甘氨酰-缬氨酰-苄氧喹甲酯-丙氨酰-苯基丙氨酸甲酯 苯丙氨酰-甘氨酰-组氨酰-苄氧喹甲酯-丙氨酰-苯基丙氨酸甲酯 苯丙氨酰-beta-丙氨酸 苯丁抑制素盐酸盐 苄氧羰基-甘氨酰-肌氨酸 芴甲氧羰基-4-叔丁酯-L-天冬氨酸-(2-羟基-4-甲氧基)苄基-甘氨酸 艾默德斯 腐草霉素 脲-甲醛氨酸酯(1:1:1) 胃酶抑素 A 肠螯素铁 肌肽盐酸盐 肌氨酰-肌氨酸 聚普瑞锌杂质7 罗米地辛 缬氨霉素 绿僵菌素D 绿僵菌素C 绿僵菌素 B