摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

正丁基-Β-D-呋喃果糖苷 | 80971-60-4

中文名称
正丁基-Β-D-呋喃果糖苷
中文别名
——
英文名称
β-D-fructofuranose 2-butyl ether
英文别名
N-butyl-O-β-D-fructofuranoside;n-butyl β-D-fructofuranoside;n-butyl-β-D-fructofuranoside;β-D-fructofuranoside, butyl;butyl β-D-fructofuranoside;butyl-β-D-fructofuranoside;Butyl fructofuranoside;(2R,3S,4S,5R)-2-butoxy-2,5-bis(hydroxymethyl)oxolane-3,4-diol
正丁基-Β-D-呋喃果糖苷化学式
CAS
80971-60-4
化学式
C10H20O6
mdl
——
分子量
236.265
InChiKey
XRGRZXPJJVQDJO-DOLQZWNJSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -0.5
  • 重原子数:
    16
  • 可旋转键数:
    6
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    99.4
  • 氢给体数:
    4
  • 氢受体数:
    6

安全信息

  • 储存条件:
    室温、密封、通风

SDS

SDS:17c088c8a7685a7f8216b13d737586ea
查看

制备方法与用途

n-丁基-β-D-呋喃果糖苷可以从康艾散中分离得到。正丁基-β-D-呋喃果糖苷可通过线粒体途径诱导细胞凋亡,并且在癌症研究中具有应用价值。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    参考文献:
    名称:
    STRAATHOF, A. J. J.;VRIJENHOEF, J. P.;SPRANGERS, E. P. A. T.;VAN, BEKKUM +, J. CARBOHYDR. CHEM., 7,(1988) N 1, 223-238
    摘要:
    DOI:
点击查看最新优质反应信息

文献信息

  • Mcm-41 Materials as Catalysts for the Synthesis of Alkyl Fructosides
    作者:A.M. van der Heijden、F. van Rantwijk、H. van Bekkum
    DOI:10.1080/07328309908543987
    日期:1999.1.1
    derivatives of fructose has lagged because no efficient synthesis was available. We have found that mesoporous materials of the MCM-41 type are active and selective catalysts for the alkylation of fructose. Quantitative yields were obtained in the reaction of fructose with lower alcohols, up to C4. For long chain alcohols yields were moderate but the alkyl fructopyranosides could be easily purified. The other
    糖的烷基化结合了两个主要可再生类别的基本特征,即。甘油三酸酯和碳水化合物,同时导致生物友好型表面活性剂和乳化剂果糖的烷基化衍生物的开发滞后,因为没有有效的合成方法。我们发现MCM-41型中孔材料是果糖烷基化的活性和选择性催化剂。在果糖与低至C4的低级醇反应中获得定量收率。对于长链醇,产率中等,但是烷基果糖喃糖苷可以容易地纯化。其他异构体可以通过色谱法分离。
  • Verhart, Cor G.J.; Fransen, Carel T.M.; Zwanenburg, Binne, Recueil des Travaux Chimiques des Pays-Bas, 1996, vol. 115, # 2, p. 133 - 139
    作者:Verhart, Cor G.J.、Fransen, Carel T.M.、Zwanenburg, Binne、Chittenden, Gordon J.F.
    DOI:——
    日期:——
  • Synthesis of Alkyl Fructosides Using Solid Acid Catalysts. Part I: Silica-Alumina Cracking Catalysts
    作者:A. T.J.W. de Goede、M. P.J. van Deurzen、I. G. van der Leij、A. M. van der Heijden、J. M.A. Baas、F. van Rantwijk、H. van Bekkum
    DOI:10.1080/07328309608005657
    日期:1996.4
    Silica-alumina cracking catalysts and acid clays efficiently catalyze the 2-O-alkylation of D-fructose with long chain alcohols. Under the conditions applied virtually no degradation of fructose is observed. L-Sorbose and the aldopentoses also undergo silica-alumina-catalyzed alkylation. The rate of conversion is related to the solubility of the monosaccharide and the stability of the intermediate oxocarbenium ion. Best results in fructose alkylation are obtained by applying a recirculation method with butyl fructoside as soluble intermediate.
  • Enzymatic fructosylation of aromatic and aliphatic alcohols by Bacillus subtilis levansucrase: Reactivity of acceptors
    作者:Arlette Mena-Arizmendi、Joel Alderete、Sergio Águila、Alain Marty、Alfonso Miranda-Molina、Agustín López-Munguía、Edmundo Castillo
    DOI:10.1016/j.molcatb.2011.02.002
    日期:2011.6
    Levansucrases from Bacillus subtilis (BS-LVS) and Leuconostoc mesenteroides ssp. mesenteroides ATCC 8293 (LevC), inulosucrase from Leuconostoc citreum (IslA) and an invertase from Saccharomyces cerevisiae (Inv) were evaluated in acceptor reactions with non-sugar acceptors. Among them, BS-LVS was selected for the fructosylation of aromatic or aliphatic alcohols due to its high activity and stability. The effects of acceptor concentration, enzyme concentration and the presence of a co-solvent in the fructosylation efficiency of hydroquinone were evaluated. It was demonstrated that this reaction is kinetically controlled, producing the best yields of phenolic fructosides when 500 mM of acceptor and 5 U mL(-1) of enzyme were employed. Higher enzyme loads resulted in the rapid hydrolysis of the products. Increased amounts of organic co-solvent up to 50% (v/v) reduced fructoside yield due to a concomitant decrease in the thermodynamic activity of the acceptor, as confirmed by theoretical calculations using COSMO-RS; moreover, increased fructose transfer to levan and reduced hydrolysis were observed. It was found that BS-LVS preferentially fructosylates aromatic over aliphatic alcohols. A maximum fructoside production (19-35 mM) was obtained with dihydroxybenzene acceptors such as hydroquinone, whereas reactions with primary alcohols, such as benzyl alcohol resulted in lower fructosylation efficiency. This selectivity was also demonstrated by the fact that 4-hydroxybenzylalcohol, a bifunctional acceptor, was fructosylated at a rate ten times faster on its aromatic hydroxyl group. BS-LVS selectivity over phenol fructosylation was inversely correlated with the acceptor pK(a) value. (C) 2011 Elsevier B.V. All rights reserved.
  • TAGASUGI, NAOYUKI;JOKOYAMA, KODZI;KOTOO, KADZUYUKI;MORIGUTI, TORU;OKUYAMA+
    作者:TAGASUGI, NAOYUKI、JOKOYAMA, KODZI、KOTOO, KADZUYUKI、MORIGUTI, TORU、OKUYAMA+
    DOI:——
    日期:——
查看更多